About the Project

.威尼斯赌场『wn4.com』澳门威尼斯赌场.威尼斯线上赌场.真的威尼斯赌场.威尼斯娱乐.威尼斯真人.威尼斯棋牌-w6n2c9o.2022年12月1日4时13分22秒.7bbnhvr37.com

AdvancedHelp

(0.006 seconds)

21—30 of 831 matching pages

21: 28.16 Asymptotic Expansions for Large q
Let s = 2 m + 1 , m = 0 , 1 , 2 , , and ν be fixed with m < ν < m + 1 . …
28.16.1 λ ν ( h 2 ) 2 h 2 + 2 s h 1 8 ( s 2 + 1 ) 1 2 7 h ( s 3 + 3 s ) 1 2 12 h 2 ( 5 s 4 + 34 s 2 + 9 ) 1 2 17 h 3 ( 33 s 5 + 410 s 3 + 405 s ) 1 2 20 h 4 ( 63 s 6 + 1260 s 4 + 2943 s 2 + 486 ) 1 2 25 h 5 ( 527 s 7 + 15617 s 5 + 69001 s 3 + 41607 s ) + .
22: 5.17 Barnes’ G -Function (Double Gamma Function)
G ( 1 ) = 1 ,
5.17.3 G ( z + 1 ) = ( 2 π ) z / 2 exp ( 1 2 z ( z + 1 ) 1 2 γ z 2 ) k = 1 ( ( 1 + z k ) k exp ( z + z 2 2 k ) ) .
5.17.4 Ln G ( z + 1 ) = 1 2 z ln ( 2 π ) 1 2 z ( z + 1 ) + z Ln Γ ( z + 1 ) 0 z Ln Γ ( t + 1 ) d t .
5.17.5 Ln G ( z + 1 ) 1 4 z 2 + z Ln Γ ( z + 1 ) ( 1 2 z ( z + 1 ) + 1 12 ) ln z ln A + k = 1 B 2 k + 2 2 k ( 2 k + 1 ) ( 2 k + 2 ) z 2 k .
5.17.7 C = lim n ( k = 1 n k ln k ( 1 2 n 2 + 1 2 n + 1 12 ) ln n + 1 4 n 2 ) = γ + ln ( 2 π ) 12 ζ ( 2 ) 2 π 2 = 1 12 ζ ( 1 ) ,
23: Bibliography Z
  • M. R. Zaghloul (2017) Algorithm 985: Simple, Efficient, and Relatively Accurate Approximation for the Evaluation of the Faddeyeva Function. ACM Trans. Math. Softw. 44 (2), pp. 22:122:9.
  • D. Zagier (1989) The Dilogarithm Function in Geometry and Number Theory. In Number Theory and Related Topics (Bombay, 1988), R. Askey and others (Eds.), Tata Inst. Fund. Res. Stud. Math., Vol. 12, pp. 231–249.
  • J. Zeng (1992) Weighted derangements and the linearization coefficients of orthogonal Sheffer polynomials. Proc. London Math. Soc. (3) 65 (1), pp. 122.
  • H. S. Zuckerman (1939) The computation of the smaller coefficients of J ( τ ) . Bull. Amer. Math. Soc. 45 (12), pp. 917–919.
  • M. I. Žurina and L. N. Karmazina (1964) Tables of the Legendre functions P 1 / 2 + i τ ( x ) . Part I. Translated by D. E. Brown. Mathematical Tables Series, Vol. 22, Pergamon Press, Oxford.
  • 24: 18.41 Tables
    Abramowitz and Stegun (1964, Tables 22.4, 22.6, 22.11, and 22.13) tabulates T n ( x ) , U n ( x ) , L n ( x ) , and H n ( x ) for n = 0 ( 1 ) 12 . The ranges of x are 0.2 ( .2 ) 1 for T n ( x ) and U n ( x ) , and 0.5 , 1 , 3 , 5 , 10 for L n ( x ) and H n ( x ) . …
    25: 28.26 Asymptotic Approximations for Large q
    28.26.2 i Ms m + 1 ( 3 ) ( z , h ) = e i ϕ ( π h cosh z ) 1 / 2 ( Fs m ( z , h ) i Gs m ( z , h ) ) ,
    28.26.3 ϕ = 2 h sinh z ( m + 1 2 ) arctan ( sinh z ) .
    Then as h + with fixed z in z > 0 and fixed s = 2 m + 1 ,
    28.26.4 Fc m ( z , h ) 1 + s 8 h cosh 2 z + 1 2 11 h 2 ( s 4 + 86 s 2 + 105 cosh 4 z s 4 + 22 s 2 + 57 cosh 2 z ) + 1 2 14 h 3 ( s 5 + 14 s 3 + 33 s cosh 2 z 2 s 5 + 124 s 3 + 1122 s cosh 4 z + 3 s 5 + 290 s 3 + 1627 s cosh 6 z ) + ,
    28.26.5 Gc m ( z , h ) sinh z cosh 2 z ( s 2 + 3 2 5 h + 1 2 9 h 2 ( s 3 + 3 s + 4 s 3 + 44 s cosh 2 z ) + 1 2 14 h 3 ( 5 s 4 + 34 s 2 + 9 s 6 47 s 4 + 667 s 2 + 2835 12 cosh 2 z + s 6 + 505 s 4 + 12139 s 2 + 10395 12 cosh 4 z ) ) + .
    26: Bibliography G
  • A. Gil, J. Segura, and N. M. Temme (2014) Algorithm 939: computation of the Marcum Q-function. ACM Trans. Math. Softw. 40 (3), pp. 20:1–20:21.
  • W. Groenevelt (2007) Fourier transforms related to a root system of rank 1. Transform. Groups 12 (1), pp. 77–116.
  • V. I. Gromak (1976) The solutions of Painlevé’s fifth equation. Differ. Uravn. 12 (4), pp. 740–742 (Russian).
  • V. I. Gromak (1978) One-parameter systems of solutions of Painlevé equations. Differ. Uravn. 14 (12), pp. 2131–2135 (Russian).
  • J. H. Gunn (1967) Algorithm 300: Coulomb wave functions. Comm. ACM 10 (4), pp. 244–245.
  • 27: 3.4 Differentiation
    The Lagrange ( n + 1 ) -point formula is … where ξ 0 and ξ 1 I . For the values of n 0 and n 1 used in the formulas below …
    B 1 5 = 1 12 ( 12 + 16 t 21 t 2 8 t 3 + 5 t 4 ) ,
    With the choice r = k (which is crucial when k is large because of numerical cancellation) the integrand equals e k at the dominant points θ = 0 , 2 π , and in combination with the factor k k in front of the integral sign this gives a rough approximation to 1 / k ! . …
    28: 16.12 Products
    16.12.3 ( F 1 2 ( a , b c ; z ) ) 2 = k = 0 ( 2 a ) k ( 2 b ) k ( c 1 2 ) k ( c ) k ( 2 c 1 ) k k ! F 3 4 ( 1 2 k , 1 2 ( 1 k ) , a + b c + 1 2 , 1 2 a + 1 2 , b + 1 2 , 3 2 k c ; 1 ) z k , | z | < 1 .
    29: 25.3 Graphics
    See accompanying text
    Figure 25.3.2: Riemann zeta function ζ ( x ) and its derivative ζ ( x ) , 12 x 2 . Magnify
    See accompanying text
    Figure 25.3.4: Z ( t ) , 0 t 50 . Z ( t ) and ζ ( 1 2 + i t ) have the same zeros. … Magnify
    30: 25.20 Approximations
  • Piessens and Branders (1972) gives the coefficients of the Chebyshev-series expansions of s ζ ( s + 1 ) and ζ ( s + k ) , k = 2 , 3 , 4 , 5 , 8 , for 0 s 1 (23D).

  • Luke (1969b, p. 306) gives coefficients in Chebyshev-series expansions that cover ζ ( s ) for 0 s 1 (15D), ζ ( s + 1 ) for 0 s 1 (20D), and ln ξ ( 1 2 + i x ) 25.4) for 1 x 1 (20D). For errata see Piessens and Branders (1972).

  • Morris (1979) gives rational approximations for Li 2 ( x ) 25.12(i)) for 0.5 x 1 . Precision is varied with a maximum of 24S.

  • Antia (1993) gives minimax rational approximations for Γ ( s + 1 ) F s ( x ) , where F s ( x ) is the Fermi–Dirac integral (25.12.14), for the intervals < x 2 and 2 x < , with s = 1 2 , 1 2 , 3 2 , 5 2 . For each s there are three sets of approximations, with relative maximum errors 10 4 , 10 8 , 10 12 .