About the Project

Clenshaw%E2%80%93Curtis%20formula%20%28extended%29

AdvancedHelp

(0.003 seconds)

11—20 of 373 matching pages

11: 4.47 Approximations
Clenshaw (1962) and Luke (1975, Chapter 3) give 20D coefficients for ln , exp , sin , cos , tan , cot , arcsin , arctan , arcsinh . …
12: 3.11 Approximation Techniques
For details and examples of these methods, see Clenshaw (1957, 1962) and Miller (1966). …
Summation of Chebyshev Series: Clenshaw’s Algorithm
For error analysis and modifications of Clenshaw’s algorithm, see Oliver (1977). … The theory of polynomial minimax approximation given in §3.11(i) can be extended to the case when p n ( x ) is replaced by a rational function R k , ( x ) . …
13: 5.24 Software
See also Borwein and Zucker (1992), Carmignani and Tortorici Macaluso (1985), Clenshaw et al. (1962), Cody (1991), Filho and Schwachheim (1967), and Temme (1994a). …
14: Bibliography
  • M. J. Ablowitz and H. Segur (1977) Exact linearization of a Painlevé transcendent. Phys. Rev. Lett. 38 (20), pp. 1103–1106.
  • D. E. Amos, S. L. Daniel, and M. K. Weston (1977) Algorithm 511: CDC 6600 subroutines IBESS and JBESS for Bessel functions I ν ( x ) and J ν ( x ) , x 0 , ν 0 . ACM Trans. Math. Software 3 (1), pp. 93–95.
  • D. E. Amos (1990) Algorithm 683: A portable FORTRAN subroutine for exponential integrals of a complex argument. ACM Trans. Math. Software 16 (2), pp. 178–182.
  • G. E. Andrews, R. Askey, and R. Roy (1999) Special Functions. Encyclopedia of Mathematics and its Applications, Vol. 71, Cambridge University Press, Cambridge.
  • M. J. Atia, A. Martínez-Finkelshtein, P. Martínez-González, and F. Thabet (2014) Quadratic differentials and asymptotics of Laguerre polynomials with varying complex parameters. J. Math. Anal. Appl. 416 (1), pp. 52–80.
  • 15: Bibliography R
  • A. Ralston (1965) Rational Chebyshev approximation by Remes’ algorithms. Numer. Math. 7 (4), pp. 322–330.
  • J. Raynal (1979) On the definition and properties of generalized 6 - j  symbols. J. Math. Phys. 20 (12), pp. 2398–2415.
  • I. S. Reed, D. W. Tufts, X. Yu, T. K. Truong, M. T. Shih, and X. Yin (1990) Fourier analysis and signal processing by use of the Möbius inversion formula. IEEE Trans. Acoustics, Speech, Signal Processing 38, pp. 458–470.
  • S. R. Rengarajan and J. E. Lewis (1980) Mathieu functions of integral orders and real arguments. IEEE Trans. Microwave Theory Tech. 28 (3), pp. 276–277.
  • H. Rosengren (1999) Another proof of the triple sum formula for Wigner 9 j -symbols. J. Math. Phys. 40 (12), pp. 6689–6691.
  • 16: Bibliography L
  • D. F. Lawden (1989) Elliptic Functions and Applications. Applied Mathematical Sciences, Vol. 80, Springer-Verlag, New York.
  • P. W. Lawrence, R. M. Corless, and D. J. Jeffrey (2012) Algorithm 917: complex double-precision evaluation of the Wright ω function. ACM Trans. Math. Software 38 (3), pp. Art. 20, 17.
  • D. J. Leeming (1977) An asymptotic estimate for the Bernoulli and Euler numbers. Canad. Math. Bull. 20 (1), pp. 109–111.
  • D. R. Lehman, W. C. Parke, and L. C. Maximon (1981) Numerical evaluation of integrals containing a spherical Bessel function by product integration. J. Math. Phys. 22 (7), pp. 1399–1413.
  • D. W. Lozier and J. M. Smith (1981) Algorithm 567: Extended-range arithmetic and normalized Legendre polynomials [A1], [C1]. ACM Trans. Math. Software 7 (1), pp. 141–146.
  • 17: 4.12 Generalized Logarithms and Exponentials
    For further information, see Clenshaw et al. (1986). …
    18: 5.23 Approximations
    Clenshaw (1962) also gives 20D Chebyshev-series coefficients for Γ ( 1 + x ) and its reciprocal for 0 x 1 . …
    19: 27.2 Functions
    Euclid’s Elements (Euclid (1908, Book IX, Proposition 20)) gives an elegant proof that there are infinitely many primes. …
    Table 27.2.1: Primes.
    n p n p n + 10 p n + 20 p n + 30 p n + 40 p n + 50 p n + 60 p n + 70 p n + 80 p n + 90
    Table 27.2.2: Functions related to division.
    n ϕ ( n ) d ( n ) σ ( n ) n ϕ ( n ) d ( n ) σ ( n ) n ϕ ( n ) d ( n ) σ ( n ) n ϕ ( n ) d ( n ) σ ( n )
    7 6 2 8 20 8 6 42 33 20 4 48 46 22 4 72
    11 10 2 12 24 8 8 60 37 36 2 38 50 20 6 93
    12 4 6 28 25 20 3 31 38 18 4 60 51 32 4 72
    20: 18.38 Mathematical Applications
    Linear ordinary differential equations can be solved directly in series of Chebyshev polynomials (or other OP’s) by a method originated by Clenshaw (1957). … If the nodes in a quadrature formula with a positive weight function are chosen to be the zeros of the n th degree OP with the same weight function, and the interval of orthogonality is the same as the integration range, then the weights in the quadrature formula can be chosen in such a way that the formula is exact for all polynomials of degree not exceeding 2 n 1 . … Light and Carrington Jr. (2000) review and extend the one-dimensional analysis to solution of multi-dimensional many-particle systems, where the sparse nature of the resulting matrices is highly advantageous. … See Koornwinder (2007a, (3.13), (4.9), (4.10)) for explicit formulas. … These generalize the ladder operators, as reviewed and extended by Infeld and Hull (1951), and also called creation and annilhilation operators. …