About the Project

of differential operators

AdvancedHelp

(0.003 seconds)

11—20 of 54 matching pages

11: DLMF Project News
error generating summary
12: Bibliography L
  • B. M. Levitan and I. S. Sargsjan (1975) Introduction to spectral theory: selfadjoint ordinary differential operators. Translations of Mathematical Monographs, Vol. 39, American Mathematical Society, Providence, R.I..
  • 13: Bibliography K
  • K. H. Kwon, L. L. Littlejohn, and G. J. Yoon (2006) Construction of differential operators having Bochner-Krall orthogonal polynomials as eigenfunctions. J. Math. Anal. Appl. 324 (1), pp. 285–303.
  • 14: 18.3 Definitions
  • 1.

    As eigenfunctions of second order differential operators (Bochner’s theorem, Bochner (1929)). See the differential equations A ( x ) p n ′′ ( x ) + B ( x ) p n ( x ) + λ n p n ( x ) = 0 , in Table 18.8.1.

  • 15: Bibliography R
  • J. Rushchitsky and S. Rushchitska (2000) On Simple Waves with Profiles in the form of some Special Functions—Chebyshev-Hermite, Mathieu, Whittaker—in Two-phase Media. In Differential Operators and Related Topics, Vol. I (Odessa, 1997), Operator Theory: Advances and Applications, Vol. 117, pp. 313–322.
  • 16: Bibliography H
  • C. Hunter (1981) Two Parametric Eigenvalue Problems of Differential Equations. In Spectral Theory of Differential Operators (Birmingham, AL, 1981), North-Holland Math. Stud., Vol. 55, pp. 233–241.
  • 17: 1.17 Integral and Series Representations of the Dirac Delta
    In the language of physics and applied mathematics, these equations indicate the normalizations chosen for these non- L 2 improper eigenfunctions of the differential operators (with derivatives respect to spatial co-ordinates) which generate them; the normalizations (1.17.12_1) and (1.17.12_2) are explicitly derived in Friedman (1990, Ch. 4), the others follow similarly. …
    18: 18.39 Applications in the Physical Sciences
    The nature of, and notations and common vocabulary for, the eigenvalues and eigenfunctions of self-adjoint second order differential operators is overviewed in §1.18. … The fundamental quantum Schrödinger operator, also called the Hamiltonian, , is a second order differential operator of the form …
    19: Errata
    This especially included updated information on matrix analysis, measure theory, spectral analysis, and a new section on linear second order differential operators and eigenfunction expansions. … The specific updates to Chapter 1 include the addition of an entirely new subsection §1.18 entitled “Linear Second Order Differential Operators and Eigenfunction Expansions” which is a survey of the formal spectral analysis of second order differential operators. …
  • Chapter 1 Additions

    The following additions were made in Chapter 1:

  • Equation (1.4.34)
    1.4.34 𝒱 a , b ( f ) = a b | f ( x ) | d x

    The integrand has been corrected so that the absolute value does not include the differential.

    Reported by Tran Quoc Viet on 2020-08-11

  • Subsection 1.16(vii)

    Several changes have been made to

    1. (i)

      make consistent use of the Fourier transform notations ( f ) , ( ϕ ) and ( u ) where f is a function of one real variable, ϕ is a test function of n variables associated with tempered distributions, and u is a tempered distribution (see (1.14.1), (1.16.29) and (1.16.35));

    2. (ii)

      introduce the partial differential operator 𝐃 in (1.16.30);

    3. (iii)

      clarify the definition (1.16.32) of the partial differential operator P ( 𝐃 ) ; and

    4. (iv)

      clarify the use of P ( 𝐃 ) and P ( 𝐱 ) in (1.16.33), (1.16.34), (1.16.36) and (1.16.37).

  • 20: 18.27 q -Hahn Class
    In the q -Hahn class OP’s the role of the operator d / d x in the Jacobi, Laguerre, and Hermite cases is played by the q -derivative 𝒟 q , as defined in (17.2.41). …