About the Project

limiting forms as trigonometric functions

AdvancedHelp

(0.007 seconds)

11—20 of 39 matching pages

11: 28.28 Integrals, Integral Representations, and Integral Equations
β–Ί
28.28.21 4 Ο€ ⁒ 0 Ο€ / 2 π’ž 2 ⁒ β„“ + 1 ( j ) ⁑ ( 2 ⁒ h ⁒ R ) ⁒ cos ⁑ ( ( 2 ⁒ β„“ + 1 ) ⁒ Ο• ) ⁒ ce 2 ⁒ m + 1 ⁑ ( t , h 2 ) ⁒ d t = ( 1 ) β„“ + m ⁒ A 2 ⁒ β„“ + 1 2 ⁒ m + 1 ⁑ ( h 2 ) ⁒ Mc 2 ⁒ m + 1 ( j ) ⁑ ( z , h ) ,
β–Ί
28.28.22 4 Ο€ ⁒ 0 Ο€ / 2 π’ž 2 ⁒ β„“ + 1 ( j ) ⁑ ( 2 ⁒ h ⁒ R ) ⁒ sin ⁑ ( ( 2 ⁒ β„“ + 1 ) ⁒ Ο• ) ⁒ se 2 ⁒ m + 1 ⁑ ( t , h 2 ) ⁒ d t = ( 1 ) β„“ + m ⁒ B 2 ⁒ β„“ + 1 2 ⁒ m + 1 ⁑ ( h 2 ) ⁒ Ms 2 ⁒ m + 1 ( j ) ⁑ ( z , h ) ,
12: 29.5 Special Cases and Limiting Forms
§29.5 Special Cases and Limiting Forms
β–Ί
29.5.5 lim k 1 𝐸𝑐 Ξ½ m ⁑ ( z , k 2 ) 𝐸𝑐 Ξ½ m ⁑ ( 0 , k 2 ) = lim k 1 𝐸𝑠 Ξ½ m + 1 ⁑ ( z , k 2 ) 𝐸𝑠 Ξ½ m + 1 ⁑ ( 0 , k 2 ) = 1 ( cosh ⁑ z ) ΞΌ ⁒ F ⁑ ( 1 2 ⁒ ΞΌ 1 2 ⁒ Ξ½ , 1 2 ⁒ ΞΌ + 1 2 ⁒ Ξ½ + 1 2 1 2 ; tanh 2 ⁑ z ) , m even,
β–Ί
29.5.6 lim k 1 𝐸𝑐 Ξ½ m ⁑ ( z , k 2 ) d 𝐸𝑐 Ξ½ m ⁑ ( z , k 2 ) / d z | z = 0 = lim k 1 𝐸𝑠 Ξ½ m + 1 ⁑ ( z , k 2 ) d 𝐸𝑠 Ξ½ m + 1 ⁑ ( z , k 2 ) / d z | z = 0 = tanh ⁑ z ( cosh ⁑ z ) ΞΌ ⁒ F ⁑ ( 1 2 ⁒ ΞΌ 1 2 ⁒ Ξ½ + 1 2 , 1 2 ⁒ ΞΌ + 1 2 ⁒ Ξ½ + 1 3 2 ; tanh 2 ⁑ z ) , m odd,
β–Ίwhere F is the hypergeometric function; see §15.2(i). … β–Ίwhere ce m ⁑ ( z , ΞΈ ) and se m ⁑ ( z , ΞΈ ) are Mathieu functions; see §28.2(vi).
13: 13.2 Definitions and Basic Properties
β–ΊIt can be regarded as the limiting form of the hypergeometric differential equation (§15.10(i)) that is obtained on replacing z by z / b , letting b , and subsequently replacing the symbol c by b . … β–Ί β–ΊAlthough M ⁑ ( a , b , z ) does not exist when b = n , n = 0 , 1 , 2 , , many formulas containing M ⁑ ( a , b , z ) continue to apply in their limiting form. … β–Ί
§13.2(iii) Limiting Forms as z 0
β–Ί
§13.2(iv) Limiting Forms as z
14: 19.14 Reduction of General Elliptic Integrals
β–ΊIn (19.14.1)–(19.14.3) both the integrand and cos ⁑ Ο• are assumed to be nonnegative. Cases in which cos ⁑ Ο• < 0 can be included by application of (19.2.10). … β–ΊLegendre (1825–1832) showed that every elliptic integral can be expressed in terms of the three integrals in (19.1.2) supplemented by algebraic, logarithmic, and trigonometric functions. …The choice among 21 transformations for final reduction to Legendre’s normal form depends on inequalities involving the limits of integration and the zeros of the cubic or quartic polynomial. A similar remark applies to the transformations given in Erdélyi et al. (1953b, §13.5) and to the choice among explicit reductions in the extensive table of Byrd and Friedman (1971), in which one limit of integration is assumed to be a branch point of the integrand at which the integral converges. …
15: 13.14 Definitions and Basic Properties
β–ΊStandard solutions are: … β–Ί β–ΊAlthough M ΞΊ , ΞΌ ⁑ ( z ) does not exist when 2 ⁒ ΞΌ = 1 , 2 , 3 , , many formulas containing M ΞΊ , ΞΌ ⁑ ( z ) continue to apply in their limiting form. … β–Ί
§13.14(iii) Limiting Forms as z 0
β–Ί
§13.14(iv) Limiting Forms as z
16: 10.52 Limiting Forms
§10.52 Limiting Forms
β–Ί
10.52.1 𝗃 n ⁑ ( z ) , 𝗂 n ( 1 ) ⁑ ( z ) z n / ( 2 ⁒ n + 1 ) !! ,
β–Ί β–Ί
𝗃 n ⁑ ( z ) = z 1 ⁒ sin ⁑ ( z 1 2 ⁒ n ⁒ Ο€ ) + e | ⁑ z | ⁒ O ⁑ ( z 2 ) ,
β–Ί
𝗒 n ⁑ ( z ) = z 1 ⁒ cos ⁑ ( z 1 2 ⁒ n ⁒ Ο€ ) + e | ⁑ z | ⁒ O ⁑ ( z 2 ) ,
17: 7.2 Definitions
β–Ί
§7.2(i) Error Functions
β–Ί erf ⁑ z , erfc ⁑ z , and w ⁑ ( z ) are entire functions of z , as is F ⁑ ( z ) in the next subsection. β–Ί
Values at Infinity
β–Ί β„± ⁑ ( z ) , C ⁑ ( z ) , and S ⁑ ( z ) are entire functions of z , as are f ⁑ ( z ) and g ⁑ ( z ) in the next subsection. … β–Ί
§7.2(iv) Auxiliary Functions
18: 33.11 Asymptotic Expansions for Large ρ
§33.11 Asymptotic Expansions for Large ρ
β–Ί
F β„“ ⁑ ( Ξ· , ρ ) = g ⁑ ( Ξ· , ρ ) ⁒ cos ⁑ ΞΈ β„“ + f ⁑ ( Ξ· , ρ ) ⁒ sin ⁑ ΞΈ β„“ ,
β–Ί
G β„“ ⁑ ( Ξ· , ρ ) = f ⁑ ( Ξ· , ρ ) ⁒ cos ⁑ ΞΈ β„“ g ⁑ ( Ξ· , ρ ) ⁒ sin ⁑ ΞΈ β„“ ,
β–Ί
F β„“ ⁑ ( Ξ· , ρ ) = g ^ ⁑ ( Ξ· , ρ ) ⁒ cos ⁑ ΞΈ β„“ + f ^ ⁑ ( Ξ· , ρ ) ⁒ sin ⁑ ΞΈ β„“ ,
β–Ί
G β„“ ⁑ ( Ξ· , ρ ) = f ^ ⁑ ( Ξ· , ρ ) ⁒ cos ⁑ ΞΈ β„“ g ^ ⁑ ( Ξ· , ρ ) ⁒ sin ⁑ ΞΈ β„“ ,
19: 10.2 Definitions
§10.2 Definitions
β–ΊWhen Ξ½ is an integer the right-hand side is replaced by its limiting value: … β–Ί
Bessel Functions of the Third Kind (Hankel Functions)
β–Ί
Branch Conventions
β–Ί
Cylinder Functions
20: 10.7 Limiting Forms
§10.7 Limiting Forms
β–Ί
10.7.5 Y Ξ½ ⁑ ( z ) ( 1 / Ο€ ) ⁒ cos ⁑ ( Ξ½ ⁒ Ο€ ) ⁒ Ξ“ ⁑ ( Ξ½ ) ⁒ ( 1 2 ⁒ z ) Ξ½ , ⁑ Ξ½ > 0 , Ξ½ 1 2 , 3 2 , 5 2 , ,
β–Ί
10.7.6 Y i ⁒ Ξ½ ⁑ ( z ) = i ⁒ csch ⁑ ( Ξ½ ⁒ Ο€ ) Ξ“ ⁑ ( 1 i ⁒ Ξ½ ) ⁒ ( 1 2 ⁒ z ) i ⁒ Ξ½ i ⁒ coth ⁑ ( Ξ½ ⁒ Ο€ ) Ξ“ ⁑ ( 1 + i ⁒ Ξ½ ) ⁒ ( 1 2 ⁒ z ) i ⁒ Ξ½ + e | Ξ½ ⁒ ph ⁑ z | ⁒ o ⁑ ( 1 ) , Ξ½ ℝ and Ξ½ 0 .
β–Ί
J Ξ½ ⁑ ( z ) = 2 / ( Ο€ ⁒ z ) ⁒ ( cos ⁑ ( z 1 2 ⁒ Ξ½ ⁒ Ο€ 1 4 ⁒ Ο€ ) + e | ⁑ z | ⁒ o ⁑ ( 1 ) ) ,
β–Ί
Y Ξ½ ⁑ ( z ) = 2 / ( Ο€ ⁒ z ) ⁒ ( sin ⁑ ( z 1 2 ⁒ Ξ½ ⁒ Ο€ 1 4 ⁒ Ο€ ) + e | ⁑ z | ⁒ o ⁑ ( 1 ) ) , | ph ⁑ z | Ο€ Ξ΄ ( < Ο€ ) .