About the Project

incomplete integrals

AdvancedHelp

(0.003 seconds)

21—30 of 78 matching pages

21: 19.25 Relations to Other Functions
22: 19.14 Reduction of General Elliptic Integrals
19.14.1 1 x d t t 3 1 = 3 1 / 4 F ( ϕ , k ) , cos ϕ = 3 + 1 x 3 1 + x , k 2 = 2 3 4 .
19.14.2 x 1 d t 1 t 3 = 3 1 / 4 F ( ϕ , k ) , cos ϕ = 3 1 + x 3 + 1 x , k 2 = 2 + 3 4 .
19.14.3 0 x d t 1 + t 4 = sign ( x ) 2 F ( ϕ , k ) , cos ϕ = 1 x 2 1 + x 2 , k 2 = 1 2 .
19.14.4 y x d t ( a 1 + b 1 t 2 ) ( a 2 + b 2 t 2 ) = 1 γ α F ( ϕ , k ) , k 2 = ( γ β ) / ( γ α ) .
23: 19.8 Quadratic Transformations
24: 19.21 Connection Formulas
§19.21(ii) Incomplete Integrals
25: 19.36 Methods of Computation
The incomplete integrals R F ( x , y , z ) and R G ( x , y , z ) can be computed by successive transformations in which two of the three variables converge quadratically to a common value and the integrals reduce to R C , accompanied by two quadratically convergent series in the case of R G ; compare Carlson (1965, §§5,6). … Bulirsch (1969a, b) extend Bartky’s transformation to el3 ( x , k c , p ) by expressing it in terms of the first incomplete integral, a complete integral of the third kind, and a more complicated integral to which Bartky’s method can be applied. … For fast methods for computing the incomplete elliptic integral of the first kind see Karp and Sitnik (2007) and Fukushima (2010). …
26: 19.22 Quadratic Transformations
§19.22(iii) Incomplete Integrals
27: 19.33 Triaxial Ellipsoids
28: 8.8 Recurrence Relations and Derivatives
29: 19.30 Lengths of Plane Curves
19.30.6 s ( 1 / k ) = a 2 b 2 F ( ϕ , k ) = a 2 b 2 R F ( c 1 , c k 2 , c ) , k 2 = ( a 2 b 2 ) / ( a 2 + λ ) , c = csc 2 ϕ .
30: 19.5 Maclaurin and Related Expansions
19.5.4_1 F ( ϕ , k ) = m = 0 ( 1 2 ) m sin 2 m + 1 ϕ ( 2 m + 1 ) m ! F 1 2 ( m + 1 2 , 1 2 m + 3 2 ; sin 2 ϕ ) k 2 m = sin ϕ F 1 ( 1 2 ; 1 2 , 1 2 ; 3 2 ; sin 2 ϕ , k 2 sin 2 ϕ ) ,
19.5.4_2 E ( ϕ , k ) = m = 0 ( 1 2 ) m sin 2 m + 1 ϕ ( 2 m + 1 ) m ! F 1 2 ( m + 1 2 , 1 2 m + 3 2 ; sin 2 ϕ ) k 2 m = sin ϕ F 1 ( 1 2 ; 1 2 , 1 2 ; 3 2 ; sin 2 ϕ , k 2 sin 2 ϕ ) ,
19.5.4_3 Π ( ϕ , α 2 , k ) = m = 0 ( 1 2 ) m sin 2 m + 1 ϕ ( 2 m + 1 ) m ! F 1 ( m + 1 2 ; 1 2 , 1 ; m + 3 2 ; sin 2 ϕ , α 2 sin 2 ϕ ) k 2 m ,