8.7 Series Expansions8.9 Continued Fractions

§8.8 Recurrence Relations and Derivatives

For n=0,1,2,\dots,

8.8.7\mathop{\gamma\/}\nolimits\!\left(a+n,z\right)=\left(a\right)_{{n}}\mathop{\gamma\/}\nolimits\!\left(a,z\right)-z^{a}e^{{-z}}\sum _{{k=0}}^{{n-1}}\frac{\mathop{\Gamma\/}\nolimits\!\left(a+n\right)}{\mathop{\Gamma\/}\nolimits\!\left(a+k+1\right)}z^{k},
8.8.8\mathop{\gamma\/}\nolimits\!\left(a,z\right)=\frac{\mathop{\Gamma\/}\nolimits\!\left(a\right)}{\mathop{\Gamma\/}\nolimits\!\left(a-n\right)}\mathop{\gamma\/}\nolimits\!\left(a-n,z\right)-z^{{a-1}}e^{{-z}}\sum _{{k=0}}^{{n-1}}\frac{\mathop{\Gamma\/}\nolimits\!\left(a\right)}{\mathop{\Gamma\/}\nolimits\!\left(a-k\right)}z^{{-k}},
8.8.9\mathop{\Gamma\/}\nolimits\!\left(a+n,z\right)=\left(a\right)_{{n}}\mathop{\Gamma\/}\nolimits\!\left(a,z\right)+z^{a}e^{{-z}}\sum _{{k=0}}^{{n-1}}\frac{\mathop{\Gamma\/}\nolimits\!\left(a+n\right)}{\mathop{\Gamma\/}\nolimits\!\left(a+k+1\right)}z^{k},
8.8.10\mathop{\Gamma\/}\nolimits\!\left(a,z\right)=\frac{\mathop{\Gamma\/}\nolimits\!\left(a\right)}{\mathop{\Gamma\/}\nolimits\!\left(a-n\right)}\mathop{\Gamma\/}\nolimits\!\left(a-n,z\right)+z^{{a-1}}e^{{-z}}\sum _{{k=0}}^{{n-1}}\frac{\mathop{\Gamma\/}\nolimits\!\left(a\right)}{\mathop{\Gamma\/}\nolimits\!\left(a-k\right)}z^{{-k}},
8.8.11\mathop{P\/}\nolimits\!\left(a+n,z\right)=\mathop{P\/}\nolimits\!\left(a,z\right)-z^{a}e^{{-z}}\sum _{{k=0}}^{{n-1}}\frac{z^{k}}{\mathop{\Gamma\/}\nolimits\!\left(a+k+1\right)},
8.8.12\mathop{Q\/}\nolimits\!\left(a+n,z\right)=\mathop{Q\/}\nolimits\!\left(a,z\right)+z^{a}e^{{-z}}\sum _{{k=0}}^{{n-1}}\frac{z^{k}}{\mathop{\Gamma\/}\nolimits\!\left(a+k+1\right)}.
8.8.13\frac{d}{dz}\mathop{\gamma\/}\nolimits\!\left(a,z\right)=-\frac{d}{dz}\mathop{\Gamma\/}\nolimits\!\left(a,z\right)=z^{{a-1}}e^{{-z}},
8.8.14\left.\frac{\partial}{\partial a}\mathop{\gamma^{{*}}\/}\nolimits\!\left(a,z\right)\right|_{{a=0}}=-\mathop{E_{1}\/}\nolimits\!\left(z\right)-\mathop{\ln\/}\nolimits z.

For \mathop{E_{1}\/}\nolimits\!\left(z\right) see §8.19(i).