About the Project

for Bessel and Hankel functions

AdvancedHelp

(0.010 seconds)

11—20 of 66 matching pages

11: 10.47 Definitions and Basic Properties
β–Ί
10.47.5 𝗁 n ( 1 ) ⁑ ( z ) = 1 2 ⁒ Ο€ / z ⁒ H n + 1 2 ( 1 ) ⁑ ( z ) = ( 1 ) n + 1 ⁒ i ⁒ 1 2 ⁒ Ο€ / z ⁒ H n 1 2 ( 1 ) ⁑ ( z ) ,
β–Ί
10.47.6 𝗁 n ( 2 ) ⁑ ( z ) = 1 2 ⁒ Ο€ / z ⁒ H n + 1 2 ( 2 ) ⁑ ( z ) = ( 1 ) n ⁒ i ⁒ 1 2 ⁒ Ο€ / z ⁒ H n 1 2 ( 2 ) ⁑ ( z ) .
β–Ί 𝗃 n ⁑ ( z ) and 𝗒 n ⁑ ( z ) are the spherical Bessel functions of the first and second kinds, respectively; 𝗁 n ( 1 ) ⁑ ( z ) and 𝗁 n ( 2 ) ⁑ ( z ) are the spherical Bessel functions of the third kind. … β–ΊFor example, z n ⁒ 𝗃 n ⁑ ( z ) , z n + 1 ⁒ 𝗒 n ⁑ ( z ) , z n + 1 ⁒ 𝗁 n ( 1 ) ⁑ ( z ) , z n + 1 ⁒ 𝗁 n ( 2 ) ⁑ ( z ) , z n ⁒ 𝗂 n ( 1 ) ⁑ ( z ) , z n + 1 ⁒ 𝗂 n ( 2 ) ⁑ ( z ) , and z n + 1 ⁒ 𝗄 n ⁑ ( z ) are all entire functions of z . … β–Ί
10.47.13 𝗄 n ⁑ ( z ) = 1 2 ⁒ Ο€ ⁒ i n ⁒ 𝗁 n ( 1 ) ⁑ ( i ⁒ z ) = 1 2 ⁒ Ο€ ⁒ i n ⁒ 𝗁 n ( 2 ) ⁑ ( i ⁒ z ) .
12: 10.75 Tables
β–Ί
§10.75(iii) Zeros and Associated Values of the Bessel Functions, Hankel Functions, and their Derivatives
β–Ί
  • Döring (1966) tabulates all zeros of Y 0 ⁑ ( z ) , Y 1 ⁑ ( z ) , H 0 ( 1 ) ⁑ ( z ) , H 1 ( 1 ) ⁑ ( z ) , that lie in the sector | z | < 158 , | ph ⁑ z | Ο€ , to 10D. Some of the smaller zeros of Y n ⁑ ( z ) and H n ( 1 ) ⁑ ( z ) for n = 2 , 3 , 4 , 5 , 15 are also included.

  • 13: 9.6 Relations to Other Functions
    β–Ί
    §9.6(i) Airy Functions as Bessel Functions, Hankel Functions, and Modified Bessel Functions
    β–Ί
    9.6.6 Ai ⁑ ( z ) = ( z / 3 ) ⁒ ( J 1 / 3 ⁑ ( ΞΆ ) + J 1 / 3 ⁑ ( ΞΆ ) ) = 1 2 ⁒ z / 3 ⁒ ( e Ο€ ⁒ i / 6 ⁒ H 1 / 3 ( 1 ) ⁑ ( ΞΆ ) + e Ο€ ⁒ i / 6 ⁒ H 1 / 3 ( 2 ) ⁑ ( ΞΆ ) ) = 1 2 ⁒ z / 3 ⁒ ( e Ο€ ⁒ i / 6 ⁒ H 1 / 3 ( 1 ) ⁑ ( ΞΆ ) + e Ο€ ⁒ i / 6 ⁒ H 1 / 3 ( 2 ) ⁑ ( ΞΆ ) ) ,
    β–Ί
    9.6.7 Ai ⁑ ( z ) = ( z / 3 ) ⁒ ( J 2 / 3 ⁑ ( ΞΆ ) J 2 / 3 ⁑ ( ΞΆ ) ) = 1 2 ⁒ ( z / 3 ) ⁒ ( e Ο€ ⁒ i / 6 ⁒ H 2 / 3 ( 1 ) ⁑ ( ΞΆ ) + e Ο€ ⁒ i / 6 ⁒ H 2 / 3 ( 2 ) ⁑ ( ΞΆ ) ) = 1 2 ⁒ ( z / 3 ) ⁒ ( e 5 ⁒ Ο€ ⁒ i / 6 ⁒ H 2 / 3 ( 1 ) ⁑ ( ΞΆ ) + e 5 ⁒ Ο€ ⁒ i / 6 ⁒ H 2 / 3 ( 2 ) ⁑ ( ΞΆ ) ) ,
    β–Ί
    §9.6(ii) Bessel Functions, Hankel Functions, and Modified Bessel Functions as Airy Functions
    β–Ί
    9.6.20 H 2 / 3 ( 2 ) ⁑ ( ΞΆ ) = e 2 ⁒ Ο€ ⁒ i / 3 ⁒ H 2 / 3 ( 2 ) ⁑ ( ΞΆ ) = e Ο€ ⁒ i / 6 ⁒ ( 3 / z ) ⁒ ( Ai ⁑ ( z ) + i ⁒ Bi ⁑ ( z ) ) .
    14: 10.8 Power Series
    §10.8 Power Series
    15: 10.52 Limiting Forms
    16: 10.27 Connection Formulas
    β–Ί
    10.27.7 I Ξ½ ⁑ ( z ) = 1 2 ⁒ e βˆ“ Ξ½ ⁒ Ο€ ⁒ i / 2 ⁒ ( H Ξ½ ( 1 ) ⁑ ( z ⁒ e ± Ο€ ⁒ i / 2 ) + H Ξ½ ( 2 ) ⁑ ( z ⁒ e ± Ο€ ⁒ i / 2 ) ) , Ο€ ± ph ⁑ z 1 2 ⁒ Ο€ .
    β–Ί
    10.27.8 K Ξ½ ⁑ ( z ) = { 1 2 ⁒ Ο€ ⁒ i ⁒ e Ξ½ ⁒ Ο€ ⁒ i / 2 ⁒ H Ξ½ ( 1 ) ⁑ ( z ⁒ e Ο€ ⁒ i / 2 ) , Ο€ ph ⁑ z 1 2 ⁒ Ο€ , 1 2 ⁒ Ο€ ⁒ i ⁒ e Ξ½ ⁒ Ο€ ⁒ i / 2 ⁒ H Ξ½ ( 2 ) ⁑ ( z ⁒ e Ο€ ⁒ i / 2 ) , 1 2 ⁒ Ο€ ph ⁑ z Ο€ .
    17: 10.7 Limiting Forms
    18: 10.77 Software
    β–Ί
    §10.77(v) Bessel Functions–Real Order and Complex Argument (including Hankel Functions)
    19: 10.50 Wronskians and Cross-Products
    §10.50 Wronskians and Cross-Products
    β–Ί
    𝒲 ⁑ { 𝗁 n ( 1 ) ⁑ ( z ) , 𝗁 n ( 2 ) ⁑ ( z ) } = 2 ⁒ i ⁒ z 2 .
    β–Ί
    𝒲 ⁑ { 𝗂 n ( 1 ) ⁑ ( z ) , 𝗂 n ( 2 ) ⁑ ( z ) } = ( 1 ) n + 1 ⁒ z 2 ,
    β–Ί
    10.50.4 𝗃 0 ⁑ ( z ) ⁒ 𝗃 n ⁑ ( z ) + 𝗒 0 ⁑ ( z ) ⁒ 𝗒 n ⁑ ( z ) = cos ⁑ ( 1 2 ⁒ n ⁒ Ο€ ) ⁒ k = 0 n / 2 ( 1 ) k ⁒ a 2 ⁒ k ⁑ ( n + 1 2 ) z 2 ⁒ k + 2 + sin ⁑ ( 1 2 ⁒ n ⁒ Ο€ ) ⁒ k = 0 ( n 1 ) / 2 ( 1 ) k ⁒ a 2 ⁒ k + 1 ⁑ ( n + 1 2 ) z 2 ⁒ k + 3 ,
    β–ΊResults corresponding to (10.50.3) and (10.50.4) for 𝗂 n ( 1 ) ⁑ ( z ) and 𝗂 n ( 2 ) ⁑ ( z ) are obtainable via (10.47.12).
    20: 10.19 Asymptotic Expansions for Large Order
    §10.19 Asymptotic Expansions for Large Order
    β–Ί
    §10.19(i) Asymptotic Forms
    β–Ί β–Ί
    §10.19(iii) Transition Region
    β–ΊSee also §10.20(i).