About the Project

complex modulus

AdvancedHelp

(0.009 seconds)

11—20 of 391 matching pages

11: 19.1 Special Notation
l , m , n nonnegative integers.
k real or complex modulus.
k complementary real or complex modulus, k 2 + k 2 = 1 .
12: 19.7 Connection Formulas
19.7.8 Π ( ϕ , α 2 , k ) + Π ( ϕ , ω 2 , k ) = F ( ϕ , k ) + c R C ( ( c 1 ) ( c k 2 ) , ( c α 2 ) ( c ω 2 ) ) , α 2 ω 2 = k 2 .
19.7.9 ( k 2 α 2 ) Π ( ϕ , α 2 , k ) + ( k 2 ω 2 ) Π ( ϕ , ω 2 , k ) = k 2 F ( ϕ , k ) α 2 ω 2 c 1 R C ( c ( c k 2 ) , ( c α 2 ) ( c ω 2 ) ) , ( 1 α 2 ) ( 1 ω 2 ) = 1 k 2 .
19.7.10 ( 1 α 2 ) Π ( ϕ , α 2 , k ) + ( 1 ω 2 ) Π ( ϕ , ω 2 , k ) = F ( ϕ , k ) + ( 1 α 2 ω 2 ) c k 2 R C ( c ( c 1 ) , ( c α 2 ) ( c ω 2 ) ) , ( k 2 α 2 ) ( k 2 ω 2 ) = k 2 ( k 2 1 ) .
13: 22.13 Derivatives and Differential Equations
22.13.2 ( d d z cn ( z , k ) ) 2 = ( 1 cn 2 ( z , k ) ) ( k 2 + k 2 cn 2 ( z , k ) ) ,
22.13.3 ( d d z dn ( z , k ) ) 2 = ( 1 dn 2 ( z , k ) ) ( dn 2 ( z , k ) k 2 ) .
22.13.5 ( d d z sd ( z , k ) ) 2 = ( 1 k 2 sd 2 ( z , k ) ) ( 1 + k 2 sd 2 ( z , k ) ) ,
22.13.6 ( d d z nd ( z , k ) ) 2 = ( nd 2 ( z , k ) 1 ) ( 1 k 2 nd 2 ( z , k ) ) ,
22.13.8 ( d d z nc ( z , k ) ) 2 = ( k 2 + k 2 nc 2 ( z , k ) ) ( nc 2 ( z , k ) 1 ) ,
14: 22.3 Graphics
See accompanying text
Figure 22.3.24: sn ( x + i y , k ) for 4 x 4 , 0 y 8 , k = 1 + 1 2 i . … Magnify 3D Help
See accompanying text
Figure 22.3.25: sn ( 5 , k ) as a function of complex k 2 , 1 ( k 2 ) 3.5 , 1 ( k 2 ) 1 . … Magnify 3D Help
See accompanying text
Figure 22.3.26: Density plot of | sn ( 5 , k ) | as a function of complex k 2 , 10 ( k 2 ) 20 , 10 ( k 2 ) 10 . … Magnify
See accompanying text
Figure 22.3.27: Density plot of | sn ( 10 , k ) | as a function of complex k 2 , 10 ( k 2 ) 20 , 10 ( k 2 ) 10 . … Magnify
See accompanying text
Figure 22.3.28: Density plot of | sn ( 20 , k ) | as a function of complex k 2 , 10 ( k 2 ) 20 , 10 ( k 2 ) 10 . … Magnify
15: 19.14 Reduction of General Elliptic Integrals
19.14.1 1 x d t t 3 1 = 3 1 / 4 F ( ϕ , k ) , cos ϕ = 3 + 1 x 3 1 + x , k 2 = 2 3 4 .
19.14.2 x 1 d t 1 t 3 = 3 1 / 4 F ( ϕ , k ) , cos ϕ = 3 1 + x 3 + 1 x , k 2 = 2 + 3 4 .
19.14.3 0 x d t 1 + t 4 = sign ( x ) 2 F ( ϕ , k ) , cos ϕ = 1 x 2 1 + x 2 , k 2 = 1 2 .
19.14.4 y x d t ( a 1 + b 1 t 2 ) ( a 2 + b 2 t 2 ) = 1 γ α F ( ϕ , k ) , k 2 = ( γ β ) / ( γ α ) .
16: 19.12 Asymptotic Approximations
19.12.1 K ( k ) = m = 0 ( 1 2 ) m ( 1 2 ) m m ! m ! k 2 m ( ln ( 1 k ) + d ( m ) ) , 0 < | k | < 1 ,
19.12.2 E ( k ) = 1 + 1 2 m = 0 ( 1 2 ) m ( 3 2 ) m ( 2 ) m m ! k 2 m + 2 ( ln ( 1 k ) + d ( m ) 1 ( 2 m + 1 ) ( 2 m + 2 ) ) , | k | < 1 ,
17: 22.7 Landen Transformations
22.7.2 sn ( z , k ) = ( 1 + k 1 ) sn ( z / ( 1 + k 1 ) , k 1 ) 1 + k 1 sn 2 ( z / ( 1 + k 1 ) , k 1 ) ,
22.7.3 cn ( z , k ) = cn ( z / ( 1 + k 1 ) , k 1 ) dn ( z / ( 1 + k 1 ) , k 1 ) 1 + k 1 sn 2 ( z / ( 1 + k 1 ) , k 1 ) ,
22.7.4 dn ( z , k ) = dn 2 ( z / ( 1 + k 1 ) , k 1 ) ( 1 k 1 ) 1 + k 1 dn 2 ( z / ( 1 + k 1 ) , k 1 ) .
22.7.6 sn ( z , k ) = ( 1 + k 2 ) sn ( z / ( 1 + k 2 ) , k 2 ) cn ( z / ( 1 + k 2 ) , k 2 ) dn ( z / ( 1 + k 2 ) , k 2 ) ,
22.7.8 dn ( z , k ) = ( 1 k 2 ) ( dn 2 ( z / ( 1 + k 2 ) , k 2 ) + k 2 ) k 2 2 dn ( z / ( 1 + k 2 ) , k 2 ) .
18: 19.30 Lengths of Plane Curves
19.30.2 s = a 0 ϕ 1 k 2 sin 2 θ d θ .
19.30.5 L ( a , b ) = 4 a E ( k ) = 8 a R G ( 0 , b 2 / a 2 , 1 ) = 8 R G ( 0 , a 2 , b 2 ) = 8 a b R G ( 0 , a 2 , b 2 ) ,
19.30.6 s ( 1 / k ) = a 2 b 2 F ( ϕ , k ) = a 2 b 2 R F ( c 1 , c k 2 , c ) , k 2 = ( a 2 b 2 ) / ( a 2 + λ ) , c = csc 2 ϕ .
19: 19.2 Definitions
19.2.4 F ( ϕ , k ) = 0 ϕ d θ 1 k 2 sin 2 θ = 0 sin ϕ d t 1 t 2 1 k 2 t 2 ,
19.2.5 E ( ϕ , k ) = 0 ϕ 1 k 2 sin 2 θ d θ = 0 sin ϕ 1 k 2 t 2 1 t 2 d t .
19.2.7 Π ( ϕ , α 2 , k ) = 0 ϕ d θ 1 k 2 sin 2 θ ( 1 α 2 sin 2 θ ) = 0 sin ϕ d t 1 t 2 1 k 2 t 2 ( 1 α 2 t 2 ) .
19.2.8_1 K ( k ) = 0 1 d t 1 t 2 1 ( 1 k 2 ) t 2 ,
19.2.8_2 E ( k ) = 0 1 1 ( 1 k 2 ) t 2 1 t 2 d t ,
20: 22.6 Elementary Identities
22.6.3 k 2 sc 2 ( z , k ) + 1 = dc 2 ( z , k ) = k 2 nc 2 ( z , k ) + k 2 ,
22.6.4 k 2 k 2 sd 2 ( z , k ) = k 2 ( cd 2 ( z , k ) 1 ) = k 2 ( 1 nd 2 ( z , k ) ) .
22.6.8 cd ( 2 z , k ) = cd 2 ( z , k ) k 2 sd 2 ( z , k ) nd 2 ( z , k ) 1 + k 2 k 2 sd 4 ( z , k ) ,
22.6.9 sd ( 2 z , k ) = 2 sd ( z , k ) cd ( z , k ) nd ( z , k ) 1 + k 2 k 2 sd 4 ( z , k ) ,
22.6.10 nd ( 2 z , k ) = nd 2 ( z , k ) + k 2 sd 2 ( z , k ) cd 2 ( z , k ) 1 + k 2 k 2 sd 4 ( z , k ) ,