About the Project

Buy lapointe 100 - www.icmat. - Priligy lapointe 30 60mg. remarke cautionation tables Online - www.icmat.

AdvancedHelp

(0.003 seconds)

11—20 of 218 matching pages

11: 27.2 Functions
Tables of primes (§27.21) reveal great irregularity in their distribution. …
§27.2(ii) Tables
Table 27.2.1 lists the first 100 prime numbers p n . Table 27.2.2 tabulates the Euler totient function ϕ ( n ) , the divisor function d ( n ) ( = σ 0 ( n ) ), and the sum of the divisors σ ( n ) ( = σ 1 ( n ) ), for n = 1 ( 1 ) 52 .
Table 27.2.1: Primes.
n p n p n + 10 p n + 20 p n + 30 p n + 40 p n + 50 p n + 60 p n + 70 p n + 80 p n + 90
12: 29.21 Tables
§29.21 Tables
  • Ince (1940a) tabulates the eigenvalues a ν m ( k 2 ) , b ν m + 1 ( k 2 ) (with a ν 2 m + 1 and b ν 2 m + 1 interchanged) for k 2 = 0.1 , 0.5 , 0.9 , ν = 1 2 , 0 ( 1 ) 25 , and m = 0 , 1 , 2 , 3 . Precision is 4D.

  • Arscott and Khabaza (1962) tabulates the coefficients of the polynomials P in Table 29.12.1 (normalized so that the numerically largest coefficient is unity, i.e. monic polynomials), and the corresponding eigenvalues h for k 2 = 0.1 ( .1 ) 0.9 , n = 1 ( 1 ) 30 . Equations from §29.6 can be used to transform to the normalization adopted in this chapter. Precision is 6S.

  • 13: Bibliography
  • A. R. Ahmadi and S. E. Widnall (1985) Unsteady lifting-line theory as a singular-perturbation problem. J. Fluid Mech 153, pp. 59–81.
  • W. A. Al-Salam and L. Carlitz (1965) Some orthogonal q -polynomials. Math. Nachr. 30, pp. 47–61.
  • G. E. Andrews (2001) Bailey’s Transform, Lemma, Chains and Tree. In Special Functions 2000: Current Perspective and Future Directions (Tempe, AZ), J. Bustoz, M. E. H. Ismail, and S. K. Suslov (Eds.), NATO Sci. Ser. II Math. Phys. Chem., Vol. 30, pp. 1–22.
  • T. M. Apostol (1985b) Note on the trivial zeros of Dirichlet L -functions. Proc. Amer. Math. Soc. 94 (1), pp. 29–30.
  • V. I. Arnol’d (1975) Critical points of smooth functions, and their normal forms. Uspehi Mat. Nauk 30 (5(185)), pp. 3–65 (Russian).
  • 14: 26.9 Integer Partitions: Restricted Number and Part Size
    See Table 26.9.1. …
    Table 26.9.1: Partitions p k ( n ) .
    n k
    9 0 1 5 12 18 23 26 28 29 30 30
    10 0 1 6 14 23 30 35 38 40 41 42
    15: 26.4 Lattice Paths: Multinomial Coefficients and Set Partitions
    Table 26.4.1 gives numerical values of multinomials and partitions λ , M 1 , M 2 , M 3 for 1 m n 5 . …
    Table 26.4.1: Multinomials and partitions.
    n m λ M 1 M 2 M 3
    5 2 1 1 , 4 1 5 30 5
    5 3 1 1 , 2 2 30 15 15
    16: Bibliography F
  • B. R. Fabijonas, D. W. Lozier, and F. W. J. Olver (2004) Computation of complex Airy functions and their zeros using asymptotics and the differential equation. ACM Trans. Math. Software 30 (4), pp. 471–490.
  • B. R. Fabijonas (2004) Algorithm 838: Airy functions. ACM Trans. Math. Software 30 (4), pp. 491–501.
  • C. Ferreira, J. L. López, and E. Pérez Sinusía (2013a) The third Appell function for one large variable. J. Approx. Theory 165, pp. 60–69.
  • H. E. Fettis (1976) Complex roots of sin z = a z , cos z = a z , and cosh z = a z . Math. Comp. 30 (135), pp. 541–545.
  • A. S. Fokas and Y. C. Yortsos (1981) The transformation properties of the sixth Painlevé equation and one-parameter families of solutions. Lett. Nuovo Cimento (2) 30 (17), pp. 539–544.
  • 17: 3.4 Differentiation
    B 2 6 = 1 60 ( 9 9 t 30 t 2 + 20 t 3 + 5 t 4 3 t 5 ) ,
    B 2 6 = 1 60 ( 9 + 9 t 30 t 2 20 t 3 + 5 t 4 + 3 t 5 ) ,
    For corresponding formulas for second, third, and fourth derivatives, with t = 0 , see Collatz (1960, Table III, pp. 538–539). … The results in this subsection for the partial derivatives follow from Panow (1955, Table 10). … For additional formulas involving values of 2 u and 4 u on square, triangular, and cubic grids, see Collatz (1960, Table VI, pp. 542–546). …
    18: 24.20 Tables
    §24.20 Tables
    Wagstaff (1978) gives complete prime factorizations of N n and E n for n = 20 ( 2 ) 60 and n = 8 ( 2 ) 42 , respectively. In Wagstaff (2002) these results are extended to n = 60 ( 2 ) 152 and n = 40 ( 2 ) 88 , respectively, with further complete and partial factorizations listed up to n = 300 and n = 200 , respectively. For information on tables published before 1961 see Fletcher et al. (1962, v. 1, §4) and Lebedev and Fedorova (1960, Chapters 11 and 14).
    19: Bibliography T
  • J. D. Talman (1983) LSFBTR: A subroutine for calculating spherical Bessel transforms. Comput. Phys. Comm. 30 (1), pp. 93–99.
  • N. M. Temme (1979a) An algorithm with ALGOL 60 program for the computation of the zeros of ordinary Bessel functions and those of their derivatives. J. Comput. Phys. 32 (2), pp. 270–279.
  • N. M. Temme (1983) The numerical computation of the confluent hypergeometric function U ( a , b , z ) . Numer. Math. 41 (1), pp. 63–82.
  • R. F. Tooper and J. Mark (1968) Simplified calculation of Ei ( x ) for positive arguments, and a short table of Shi ( x ) . Math. Comp. 22 (102), pp. 448–449.
  • H. Triebel (1965) Über die Lamésche Differentialgleichung. Math. Nachr. 30, pp. 137–154 (German).
  • 20: 13.30 Tables
    §13.30 Tables
  • Zhang and Jin (1996, pp. 411–423) tabulates M ( a , b , x ) and U ( a , b , x ) for a = 5 ( .5 ) 5 , b = 0.5 ( .5 ) 5 , and x = 0.1 , 1 , 5 , 10 , 20 , 30 , 8S (for M ( a , b , x ) ) and 7S (for U ( a , b , x ) ).

  • For other tables prior to 1961 see Fletcher et al. (1962) and Lebedev and Fedorova (1960).