About the Project

Askey–Wilson polynomials

AdvancedHelp

(0.003 seconds)

21—26 of 26 matching pages

21: 18.22 Hahn Class: Recurrence Relations and Differences
§18.22(i) Recurrence Relations in n
These polynomials satisfy (18.22.2) with p n ( x ) , A n , and C n as in Table 18.22.1.
Table 18.22.1: Recurrence relations (18.22.2) for Krawtchouk, Meixner, and Charlier polynomials.
p n ( x ) A n C n
§18.22(ii) Difference Equations in x
§18.22(iii) x -Differences
22: 18.19 Hahn Class: Definitions
§18.19 Hahn Class: Definitions
The Askey scheme extends the three families of classical OP’s (Jacobi, Laguerre and Hermite) with eight further families of OP’s for which the role of the differentiation operator d d x in the case of the classical OP’s is played by a suitable difference operator. …
  • 2.

    Wilson class (or quadratic lattice class). These are OP’s p n ( x ) = p n ( λ ( y ) ) ( p n ( x ) of degree n in x , λ ( y ) quadratic in y ) where the role of the differentiation operator is played by Δ y Δ y ( λ ( y ) ) or y y ( λ ( y ) ) or δ y δ y ( λ ( y ) ) . The Wilson class consists of two discrete and two continuous families.

  • In addition to the limit relations in §18.7(iii) there are limit relations involving the further families in the Askey scheme, see §§18.21(ii) and 18.26(ii). The Askey scheme, depicted in Figure 18.21.1, gives a graphical representation of these limits. …
    23: Bibliography S
  • I. M. Sheffer (1939) Some properties of polynomial sets of type zero. Duke Math. J. 5, pp. 590–622.
  • A. Sri Ranga (2010) Szegő polynomials from hypergeometric functions. Proc. Amer. Math. Soc. 138 (12), pp. 4259–4270.
  • W. F. Sun (1996) Uniform asymptotic expansions of Hermite polynomials. M. Phil. thesis, City University of Hong Kong.
  • R. F. Swarttouw (1997) A computer implementation of the Askey-Wilson scheme. Technical Report 13 Vrije Universteit Amsterdam.
  • O. Szász (1950) On the relative extrema of ultraspherical polynomials. Boll. Un. Mat. Ital. (3) 5, pp. 125–127.
  • 24: Bibliography D
  • H. Delange (1988) On the real roots of Euler polynomials. Monatsh. Math. 106 (2), pp. 115–138.
  • K. Dilcher (2008) On multiple zeros of Bernoulli polynomials. Acta Arith. 134 (2), pp. 149–155.
  • G. C. Donovan, J. S. Geronimo, and D. P. Hardin (1999) Orthogonal polynomials and the construction of piecewise polynomial smooth wavelets. SIAM J. Math. Anal. 30 (5), pp. 1029–1056.
  • L. Durand (1975) Nicholson-type Integrals for Products of Gegenbauer Functions and Related Topics. In Theory and Application of Special Functions (Proc. Advanced Sem., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1975), R. A. Askey (Ed.), pp. 353–374. Math. Res. Center, Univ. Wisconsin, Publ. No. 35.
  • A. Dzieciol, S. Yngve, and P. O. Fröman (1999) Coulomb wave functions with complex values of the variable and the parameters. J. Math. Phys. 40 (12), pp. 6145–6166.
  • 25: Bibliography T
  • A. Takemura (1984) Zonal Polynomials. Institute of Mathematical Statistics Lecture Notes—Monograph Series, 4, Institute of Mathematical Statistics, Hayward, CA.
  • N. M. Temme and J. L. López (2001) The Askey scheme for hypergeometric orthogonal polynomials viewed from asymptotic analysis. J. Comput. Appl. Math. 133 (1-2), pp. 623–633.
  • N. M. Temme (1986) Laguerre polynomials: Asymptotics for large degree. Technical report Technical Report AM-R8610, CWI, Amsterdam, The Netherlands.
  • P. Terwilliger (2011) The universal Askey-Wilson algebra. SIGMA 7, pp. Paper 069, 24 pp..
  • P. Terwilliger (2013) The universal Askey-Wilson algebra and DAHA of type ( C 1 , C 1 ) . SIGMA 9, pp. Paper 047, 40 pp..
  • 26: Bibliography G
  • G. Gasper and M. Rahman (2004) Basic Hypergeometric Series. Second edition, Encyclopedia of Mathematics and its Applications, Vol. 96, Cambridge University Press, Cambridge.
  • G. Gasper (1972) An inequality of Turán type for Jacobi polynomials. Proc. Amer. Math. Soc. 32, pp. 435–439.
  • W. Gautschi (1975) Computational Methods in Special Functions – A Survey. In Theory and Application of Special Functions (Proc. Advanced Sem., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1975), R. A. Askey (Ed.), pp. 1–98. Math. Res. Center, Univ. Wisconsin Publ., No. 35.
  • W. Gautschi (1984) Questions of Numerical Condition Related to Polynomials. In Studies in Numerical Analysis, G. H. Golub (Ed.), pp. 140–177.
  • V. X. Genest, L. Vinet, and A. Zhedanov (2016) The non-symmetric Wilson polynomials are the Bannai-Ito polynomials. Proc. Amer. Math. Soc. 144 (12), pp. 5217–5226.