About the Project

inhomogeneous equations

AdvancedHelp

(0.001 seconds)

11—20 of 21 matching pages

11: Bibliography O
  • A. B. Olde Daalhuis (2004b) On higher-order Stokes phenomena of an inhomogeneous linear ordinary differential equation. J. Comput. Appl. Math. 169 (1), pp. 235–246.
  • 12: 9.12 Scorer Functions
    9.12.20 Hi ( z ) = 1 π 0 exp ( 1 3 t 3 + z t ) d t ,
    9.12.30 0 z Gi ( t ) d t 1 π ln z + 2 γ + ln 3 3 π 1 π k = 1 ( 3 k 1 ) ! k ! ( 3 z 3 ) k , | ph z | 1 3 π δ .
    9.12.31 0 z Hi ( t ) d t 1 π ln z + 2 γ + ln 3 3 π + 1 π k = 1 ( 1 ) k 1 ( 3 k 1 ) ! k ! ( 3 z 3 ) k , | ph z | 2 3 π δ ,
    13: Bibliography K
  • A. A. Kapaev (1988) Asymptotic behavior of the solutions of the Painlevé equation of the first kind. Differ. Uravn. 24 (10), pp. 1684–1695 (Russian).
  • Y. A. Kravtsov (1964) Asymptotic solution of Maxwell’s equations near caustics. Izv. Vuz. Radiofiz. 7, pp. 1049–1056.
  • Y. A. Kravtsov (1968) Two new asymptotic methods in the theory of wave propagation in inhomogeneous media. Sov. Phys. Acoust. 14, pp. 1–17.
  • S. G. Krivoshlykov (1994) Quantum-Theoretical Formalism for Inhomogeneous Graded-Index Waveguides. Akademie Verlag, Berlin-New York.
  • M. D. Kruskal (1974) The Korteweg-de Vries Equation and Related Evolution Equations. In Nonlinear Wave Motion (Proc. AMS-SIAM Summer Sem., Clarkson Coll. Tech., Potsdam, N.Y., 1972), A. C. Newell (Ed.), Lectures in Appl. Math., Vol. 15, pp. 61–83.
  • 14: Bibliography L
  • C. G. Lambe and D. R. Ward (1934) Some differential equations and associated integral equations. Quart. J. Math. (Oxford) 5, pp. 81–97.
  • E. W. Leaver (1986) Solutions to a generalized spheroidal wave equation: Teukolsky’s equations in general relativity, and the two-center problem in molecular quantum mechanics. J. Math. Phys. 27 (5), pp. 1238–1265.
  • Soo-Y. Lee (1980) The inhomogeneous Airy functions, Gi ( z )  and Hi ( z ) . J. Chem. Phys. 72 (1), pp. 332–336.
  • Y. A. Li and P. J. Olver (2000) Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation. J. Differential Equations 162 (1), pp. 27–63.
  • N. A. Lukaševič (1971) The second Painlevé equation. Differ. Uravn. 7 (6), pp. 1124–1125 (Russian).
  • 15: 9.13 Generalized Airy Functions
    §9.13 Generalized Airy Functions
    §9.13(i) Generalizations from the Differential Equation
    Equations of the form … and the difference equation
    16: Bibliography B
  • P. Baldwin (1991) Coefficient functions for an inhomogeneous turning-point problem. Mathematika 38 (2), pp. 217–238.
  • A. P. Bassom, P. A. Clarkson, A. C. Hicks, and J. B. McLeod (1992) Integral equations and exact solutions for the fourth Painlevé equation. Proc. Roy. Soc. London Ser. A 437, pp. 1–24.
  • P. M. Batchelder (1967) An Introduction to Linear Difference Equations. Dover Publications Inc., New York.
  • F. Bethuel (1998) Vortices in Ginzburg-Landau Equations. In Proceedings of the International Congress of Mathematicians, Vol. III (Berlin, 1998), pp. 11–19.
  • G. Birkhoff and G. Rota (1989) Ordinary differential equations. Fourth edition, John Wiley & Sons, Inc., New York.
  • 17: Bibliography E
  • A. Erdélyi (1942a) Integral equations for Heun functions. Quart. J. Math., Oxford Ser. 13, pp. 107–112.
  • A. Erdélyi (1942b) The Fuchsian equation of second order with four singularities. Duke Math. J. 9 (1), pp. 48–58.
  • A. Erdélyi (1944) Certain expansions of solutions of the Heun equation. Quart. J. Math., Oxford Ser. 15, pp. 62–69.
  • W. N. Everitt (2005a) A catalogue of Sturm-Liouville differential equations. In Sturm-Liouville theory, pp. 271–331.
  • H. Exton (1983) The asymptotic behaviour of the inhomogeneous Airy function Hi ( z ) . Math. Chronicle 12, pp. 99–104.
  • 18: Bibliography M
  • A. J. MacLeod (1994) Computation of inhomogeneous Airy functions. J. Comput. Appl. Math. 53 (1), pp. 109–116.
  • R. S. Maier (2005) On reducing the Heun equation to the hypergeometric equation. J. Differential Equations 213 (1), pp. 171–203.
  • R. S. Maier (2007) The 192 solutions of the Heun equation. Math. Comp. 76 (258), pp. 811–843.
  • M. Mazzocco (2001a) Rational solutions of the Painlevé VI equation. J. Phys. A 34 (11), pp. 2281–2294.
  • M. Mazzocco (2001b) Picard and Chazy solutions to the Painlevé VI equation. Math. Ann. 321 (1), pp. 157–195.
  • 19: 9.10 Integrals
    9.10.1 z Ai ( t ) d t = π ( Ai ( z ) Gi ( z ) Ai ( z ) Gi ( z ) ) ,
    9.10.2 z Ai ( t ) d t = π ( Ai ( z ) Hi ( z ) Ai ( z ) Hi ( z ) ) ,
    9.10.3 z Bi ( t ) d t = 0 z Bi ( t ) d t = π ( Bi ( z ) Gi ( z ) Bi ( z ) Gi ( z ) ) = π ( Bi ( z ) Hi ( z ) Bi ( z ) Hi ( z ) ) .
    Let w ( z ) be any solution of Airy’s equation (9.2.1). …
    9.10.18 Ai ( z ) = 3 z 5 / 4 e ( 2 / 3 ) z 3 / 2 4 π 0 t 3 / 4 e ( 2 / 3 ) t 3 / 2 Ai ( t ) z 3 / 2 + t 3 / 2 d t , | ph z | < 2 3 π .
    20: Bibliography G
  • W. Gautschi (1997b) The Computation of Special Functions by Linear Difference Equations. In Advances in Difference Equations (Veszprém, 1995), S. Elaydi, I. Győri, and G. Ladas (Eds.), pp. 213–243.
  • A. Gil, J. Segura, and N. M. Temme (2001) On nonoscillating integrals for computing inhomogeneous Airy functions. Math. Comp. 70 (235), pp. 1183–1194.
  • J. J. Gray (2000) Linear Differential Equations and Group Theory from Riemann to Poincaré. 2nd edition, Birkhäuser Boston Inc., Boston, MA.
  • V. I. Gromak and N. A. Lukaševič (1982) Special classes of solutions of Painlevé equations. Differ. Uravn. 18 (3), pp. 419–429 (Russian).
  • V. I. Gromak (1975) Theory of Painlevé’s equations. Differ. Uravn. 11 (11), pp. 373–376 (Russian).