About the Project

Krattenthaler formula for determinants

AdvancedHelp

(0.001 seconds)

11—20 of 263 matching pages

11: 35.8 Generalized Hypergeometric Functions of Matrix Argument
β–Ί β–Ί
Pfaff–Saalschütz Formula
β–Ί
35.8.12 𝛀 etr ⁑ ( 𝐓 ⁒ 𝐗 ) ⁒ | 𝐗 | Ξ³ 1 2 ⁒ ( m + 1 ) ⁒ F q p ⁑ ( a 1 , , a p b 1 , , b q ; 𝐗 ) ⁒ d 𝐗 = Ξ“ m ⁑ ( Ξ³ ) ⁒ | 𝐓 | Ξ³ ⁒ F q p + 1 ⁑ ( a 1 , , a p , Ξ³ b 1 , , b q ; 𝐓 1 ) , ⁑ ( Ξ³ ) > 1 2 ⁒ ( m 1 ) .
β–Ί
35.8.13 𝟎 < 𝐗 < 𝐈 | 𝐗 | a 1 1 2 ⁒ ( m + 1 ) ⁒ | 𝐈 𝐗 | b 1 a 1 1 2 ⁒ ( m + 1 ) ⁒ F q p ⁑ ( a 2 , , a p + 1 b 2 , , b q + 1 ; 𝐓 ⁒ 𝐗 ) ⁒ d 𝐗 = 1 B m ⁑ ( b 1 a 1 , a 1 ) ⁒ F q + 1 p + 1 ⁑ ( a 1 , , a p + 1 b 1 , , b q + 1 ; 𝐓 ) , ⁑ ( b 1 a 1 ) , ⁑ ( a 1 ) > 1 2 ⁒ ( m 1 ) .
12: 24.14 Sums
β–ΊThese identities can be regarded as higher-order recurrences. Let det [ a r + s ] denote a Hankel (or persymmetric) determinant, that is, an ( n + 1 ) × ( n + 1 ) determinant with element a r + s in row r and column s for r , s = 0 , 1 , , n . … β–Ί
24.14.11 det [ B r + s ] = ( 1 ) n ⁒ ( n + 1 ) / 2 ⁒ ( k = 1 n k ! ) 6 / ( k = 1 2 ⁒ n + 1 k ! ) ,
β–Ί
24.14.12 det [ E r + s ] = ( 1 ) n ⁒ ( n + 1 ) / 2 ⁒ ( k = 1 n k ! ) 2 .
13: Bibliography M
β–Ί
  • T. Masuda, Y. Ohta, and K. Kajiwara (2002) A determinant formula for a class of rational solutions of Painlevé V equation. Nagoya Math. J. 168, pp. 1–25.
  • β–Ί
  • T. Masuda (2003) On a class of algebraic solutions to the Painlevé VI equation, its determinant formula and coalescence cascade. Funkcial. Ekvac. 46 (1), pp. 121–171.
  • β–Ί
  • S. C. Milne (2002) Infinite families of exact sums of squares formulas, Jacobi elliptic functions, continued fractions, and Schur functions. Ramanujan J. 6 (1), pp. 7–149.
  • β–Ί
  • S. C. Milne (1996) New infinite families of exact sums of squares formulas, Jacobi elliptic functions, and Ramanujan’s tau function. Proc. Nat. Acad. Sci. U.S.A. 93 (26), pp. 15004–15008.
  • β–Ί
  • D. S. Moak (1984) The q -analogue of Stirling’s formula. Rocky Mountain J. Math. 14 (2), pp. 403–413.
  • 14: 27.20 Methods of Computation: Other Number-Theoretic Functions
    β–ΊThe recursion formulas (27.14.6) and (27.14.7) can be used to calculate the partition function p ⁑ ( n ) for n < N . … β–ΊA recursion formula obtained by differentiating (27.14.18) can be used to calculate Ramanujan’s function Ο„ ⁑ ( n ) , and the values can be checked by the congruence (27.14.20). …
    15: 21.5 Modular Transformations
    β–Ί
    21.5.3 det πšͺ = 1 ,
    β–Ί
    21.5.4 ΞΈ ⁑ ( [ [ 𝐂 ⁒ 𝛀 + 𝐃 ] 1 ] T ⁒ 𝐳 | [ 𝐀 ⁒ 𝛀 + 𝐁 ] ⁒ [ 𝐂 ⁒ 𝛀 + 𝐃 ] 1 ) = ΞΎ ⁑ ( πšͺ ) ⁒ det [ 𝐂 ⁒ 𝛀 + 𝐃 ] ⁒ e Ο€ ⁒ i ⁒ 𝐳 [ [ 𝐂 ⁒ 𝛀 + 𝐃 ] 1 ⁒ 𝐂 ] 𝐳 ⁒ ΞΈ ⁑ ( 𝐳 | 𝛀 ) .
    β–Ί
    ΞΈ ⁑ ( 𝛀 1 ⁒ 𝐳 | 𝛀 1 ) = det [ i ⁒ 𝛀 ] ⁒ e Ο€ ⁒ i ⁒ 𝐳 𝛀 1 𝐳 ⁒ ΞΈ ⁑ ( 𝐳 | 𝛀 ) ,
    β–Ί
    21.5.9 ΞΈ ⁒ [ 𝐃 ⁒ 𝜢 𝐂 ⁒ 𝜷 + 1 2 ⁒ diag ⁑ [ 𝐂 ⁒ 𝐃 T ] 𝐁 ⁒ 𝜢 + 𝐀 ⁒ 𝜷 + 1 2 ⁒ diag ⁑ [ 𝐀 ⁒ 𝐁 T ] ] ⁑ ( [ [ 𝐂 ⁒ 𝛀 + 𝐃 ] 1 ] T ⁒ 𝐳 | [ 𝐀 ⁒ 𝛀 + 𝐁 ] ⁒ [ 𝐂 ⁒ 𝛀 + 𝐃 ] 1 ) = ΞΊ ⁑ ( 𝜢 , 𝜷 , πšͺ ) ⁒ det [ 𝐂 ⁒ 𝛀 + 𝐃 ] ⁒ e Ο€ ⁒ i ⁒ 𝐳 [ [ 𝐂 ⁒ 𝛀 + 𝐃 ] 1 ⁒ 𝐂 ] 𝐳 ⁒ ΞΈ ⁒ [ 𝜢 𝜷 ] ⁑ ( 𝐳 | 𝛀 ) ,
    16: Bibliography
    β–Ί
  • M. Abramowitz and I. A. Stegun (Eds.) (1964) Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. National Bureau of Standards Applied Mathematics Series, U.S. Government Printing Office, Washington, D.C..
  • β–Ί
  • W. A. Al-Salam and L. Carlitz (1959) Some determinants of Bernoulli, Euler and related numbers. Portugal. Math. 18, pp. 91–99.
  • β–Ί
  • K. Aomoto (1987) Special value of the hypergeometric function F 2 3 and connection formulae among asymptotic expansions. J. Indian Math. Soc. (N.S.) 51, pp. 161–221.
  • β–Ί
  • T. M. Apostol (1985a) Formulas for higher derivatives of the Riemann zeta function. Math. Comp. 44 (169), pp. 223–232.
  • β–Ί
  • T. M. Apostol (2006) Bernoulli’s power-sum formulas revisited. Math. Gaz. 90 (518), pp. 276–279.
  • 17: Bibliography B
    β–Ί
  • W. Barrett (1981) Mathieu functions of general order: Connection formulae, base functions and asymptotic formulae. I–V. Philos. Trans. Roy. Soc. London Ser. A 301, pp. 75–162.
  • β–Ί
  • B. C. Berndt (1975a) Character analogues of the Poisson and Euler-MacLaurin summation formulas with applications. J. Number Theory 7 (4), pp. 413–445.
  • β–Ί
  • B. C. Berndt (1975b) Periodic Bernoulli numbers, summation formulas and applications. In Theory and Application of Special Functions (Proc. Advanced Sem., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1975), pp. 143–189.
  • β–Ί
  • M. V. Berry and J. P. Keating (1992) A new asymptotic representation for ΞΆ ⁒ ( 1 2 + i ⁒ t ) and quantum spectral determinants. Proc. Roy. Soc. London Ser. A 437, pp. 151–173.
  • β–Ί
  • R. Bo and R. Wong (1999) A uniform asymptotic formula for orthogonal polynomials associated with exp ⁑ ( x 4 ) . J. Approx. Theory 98, pp. 146–166.
  • 18: Errata
    β–Ί
  • Equations (1.3.5), (1.3.6), (1.3.7)
    1.3.5 det ( 𝐀 T ) = det ( 𝐀 )
    1.3.6 det ( 𝐀 1 ) = 1 det ( 𝐀 )
    1.3.7 det ( 𝐀 ⁒ 𝐁 ) = det ( 𝐀 ) ⁒ det ( 𝐁 )

    Previously we used the notation [ a j ⁒ k ] , [ b j ⁒ k ] , for 𝐀 , 𝐁 respectively.

  • β–Ί
  • Equations (32.8.10), (32.10.9)
    32.8.10 Ο„ n ⁒ ( z ) = 𝒲 ⁑ { p 1 ⁒ ( z ) , p 3 ⁒ ( z ) , , p 2 ⁒ n 1 ⁒ ( z ) }
    32.10.9 Ο„ n ⁒ ( z ) = 𝒲 ⁑ { Ο• ⁒ ( z ) , Ο• ⁒ ( z ) , , Ο• ( n 1 ) ⁒ ( z ) }

    The right-hand side of these equation, which was originally written as a matrix determinant, was rewritten using the Wronskian determinant notation. Also, in each preceding sentence, the word ‘determinant’ was replaced with ‘Wronskian determinant’.

  • β–Ί
  • Chapter 1 Additions

    The following additions were made in Chapter 1:

  • β–Ί
  • Subsection 17.9(iii)

    The title of the paragraph which was previously “Gasper’s q -Analog of Clausen’s Formula” has been changed to “Gasper’s q -Analog of Clausen’s Formula (16.12.2)”.

  • β–Ί
  • Paragraph Inversion Formula (in §35.2)

    The wording was changed to make the integration variable more apparent.

  • 19: 1.1 Special Notation
    β–Ί β–Ίβ–Ίβ–Ί
    x , y real variables.
    det ( 𝐀 ) determinant of the square matrix 𝐀
    20: Howard S. Cohl
    β–ΊHoward is the project leader for the NIST Digital Repository of Mathematical Formulae seeding and development projects. In this regard, he has been exploring mathematical knowledge management and the digital expression of mostly unambiguous context-free full semantic information for mathematical formulae.