About the Project

scaling laws

AdvancedHelp

(0.001 seconds)

1—10 of 72 matching pages

1: 36.6 Scaling Relations
§36.6 Scaling Relations
Diffraction Catastrophe Scaling
Indices for k -Scaling of Magnitude of Ψ K or Ψ ( U ) (Singularity Index)
Indices for k -Scaling of Coordinates x m
Indices for k -Scaling of 𝐱 Hypervolume
2: 27.9 Quadratic Characters
27.9.2 ( 2 | p ) = ( 1 ) ( p 2 1 ) / 8 .
If p , q are distinct odd primes, then the quadratic reciprocity law states that … Both (27.9.1) and (27.9.2) are valid with p replaced by P ; the reciprocity law (27.9.3) holds if p , q are replaced by any two relatively prime odd integers P , Q .
3: 15.7 Continued Fractions
15.7.1 𝐅 ( a , b ; c ; z ) 𝐅 ( a , b + 1 ; c + 1 ; z ) = t 0 u 1 z t 1 u 2 z t 2 u 3 z t 3 ,
4: 15.15 Sums
15.15.1 𝐅 ( a , b c ; 1 z ) = ( 1 z 0 z ) a s = 0 ( a ) s s ! 𝐅 ( s , b c ; 1 z 0 ) ( 1 z z 0 ) s .
5: 8.24 Physical Applications
The function γ ( a , x ) appears in: discussions of power-law relaxation times in complex physical systems (Sornette (1998)); logarithmic oscillations in relaxation times for proteins (Metzler et al. (1999)); Gaussian orbitals and exponential (Slater) orbitals in quantum chemistry (Shavitt (1963), Shavitt and Karplus (1965)); population biology and ecological systems (Camacho et al. (2002)). …
6: Possible Errors in DLMF
One source of confusion, rather than actual errors, are some new functions which differ from those in Abramowitz and Stegun (1964) by scaling, shifts or constraints on the domain; see the Info box (click or hover over the [Uncaptioned image] icon) for links to defining formula. …
7: Bibliography F
  • P. J. Forrester and N. S. Witte (2004) Application of the τ -function theory of Painlevé equations to random matrices: P VI , the JUE, CyUE, cJUE and scaled limits. Nagoya Math. J. 174, pp. 29–114.
  • G. Freud (1976) On the coefficients in the recursion formulae of orthogonal polynomials. Proc. Roy. Irish Acad. Sect. A 76 (1), pp. 1–6.
  • 8: 15.6 Integral Representations
    The function 𝐅 ( a , b ; c ; z ) (not F ( a , b ; c ; z ) ) has the following integral representations:
    15.6.1 𝐅 ( a , b ; c ; z ) = 1 Γ ( b ) Γ ( c b ) 0 1 t b 1 ( 1 t ) c b 1 ( 1 z t ) a d t , | ph ( 1 z ) | < π ; c > b > 0 .
    15.6.2 𝐅 ( a , b ; c ; z ) = Γ ( 1 + b c ) 2 π i Γ ( b ) 0 ( 1 + ) t b 1 ( t 1 ) c b 1 ( 1 z t ) a d t , | ph ( 1 z ) | < π ; c b 1 , 2 , 3 , , b > 0 .
    15.6.8 𝐅 ( a , b ; c ; z ) = 1 Γ ( c d ) 0 1 𝐅 ( a , b ; d ; z t ) t d 1 ( 1 t ) c d 1 d t , | ph ( 1 z ) | < π ; c > d > 0 .
    15.6.9 𝐅 ( a , b ; c ; z ) = 0 1 t d 1 ( 1 t ) c d 1 ( 1 z t ) a + b λ 𝐅 ( λ a , λ b d ; z t ) 𝐅 ( a + b λ , λ d c d ; ( 1 t ) z 1 z t ) d t , | ph ( 1 z ) | < π ; λ , c > d > 0 .
    9: 33.22 Particle Scattering and Atomic and Molecular Spectra
    𝗄 Scaling
    The 𝗄 -scaled variables ρ and η of §33.2 are given by … In these applications, the Z -scaled variables r and ϵ are more convenient.
    Z Scaling
    i 𝗄 Scaling
    10: 14.3 Definitions and Hypergeometric Representations
    14.3.1 𝖯 ν μ ( x ) = ( 1 + x 1 x ) μ / 2 𝐅 ( ν + 1 , ν ; 1 μ ; 1 2 1 2 x ) .
    14.3.15 P ν μ ( x ) = 2 μ ( x 2 1 ) μ / 2 𝐅 ( μ ν , ν + μ + 1 ; μ + 1 ; 1 2 1 2 x ) ,