About the Project

q-Pfaff--Saalschutz sum

AdvancedHelp

(0.002 seconds)

11—20 of 374 matching pages

11: Bibliography S
  • L. Saalschütz (1893) Vorlesungen über die Bernoullischen Zahlen, ihren Zusammenhang mit den Secanten-Coefficienten und ihre wichtigeren Anwendungen. Springer-Verlag, Berlin (German).
  • H. M. Srivastava (1988) Sums of certain series of the Riemann zeta function. J. Math. Anal. Appl. 134 (1), pp. 129–140.
  • 12: 5.16 Sums
    §5.16 Sums
    5.16.1 k = 1 ( 1 ) k ψ ( k ) = π 2 8 ,
    For further sums involving the psi function see Hansen (1975, pp. 360–367). For sums of gamma functions see Andrews et al. (1999, Chapters 2 and 3) and §§15.2(i), 16.2. For related sums involving finite field analogs of the gamma and beta functions (Gauss and Jacobi sums) see Andrews et al. (1999, Chapter 1) and Terras (1999, pp. 90, 149).
    13: 27.10 Periodic Number-Theoretic Functions
    An example is Ramanujan’s sum: …It can also be expressed in terms of the Möbius function as a divisor sum: … More generally, if f and g are arbitrary, then the sumAnother generalization of Ramanujan’s sum is the Gauss sum G ( n , χ ) associated with a Dirichlet character χ ( mod k ) . … G ( n , χ ) is separable for some n if …
    14: 24.20 Tables
    §24.20 Tables
    Abramowitz and Stegun (1964, Chapter 23) includes exact values of k = 1 m k n , m = 1 ( 1 ) 100 , n = 1 ( 1 ) 10 ; k = 1 k n , k = 1 ( 1 ) k 1 k n , k = 0 ( 2 k + 1 ) n , n = 1 , 2 , , 20D; k = 0 ( 1 ) k ( 2 k + 1 ) n , n = 1 , 2 , , 18D. …
    15: 25.16 Mathematical Applications
    §25.16(ii) Euler Sums
    Euler sums have the form … H ( s ) is the special case H ( s , 1 ) of the function …which satisfies the reciprocity law …when both H ( s , z ) and H ( z , s ) are finite. …
    16: 15.15 Sums
    §15.15 Sums
    15.15.1 𝐅 ( a , b c ; 1 z ) = ( 1 z 0 z ) a s = 0 ( a ) s s ! 𝐅 ( s , b c ; 1 z 0 ) ( 1 z z 0 ) s .
    For compendia of finite sums and infinite series involving hypergeometric functions see Prudnikov et al. (1990, §§5.3 and 6.7) and Hansen (1975).
    17: 6.15 Sums
    §6.15 Sums
    6.15.2 n = 1 si ( π n ) n = 1 2 π ( ln π 1 ) ,
    6.15.3 n = 1 ( 1 ) n Ci ( 2 π n ) = 1 ln 2 1 2 γ ,
    For further sums see Fempl (1960), Hansen (1975, pp. 423–424), Harris (2000), Prudnikov et al. (1986b, vol. 2, pp. 649–650), and Slavić (1974).
    18: 1.7 Inequalities
    §1.7(i) Finite Sums
    Cauchy–Schwarz Inequality
    Minkowski’s Inequality
    Cauchy–Schwarz Inequality
    Minkowski’s Inequality
    19: 27.6 Divisor Sums
    §27.6 Divisor Sums
    Sums of number-theoretic functions extended over divisors are of special interest. …
    27.6.1 d | n λ ( d ) = { 1 , n  is a square , 0 , otherwise .
    Generating functions, Euler products, and Möbius inversion are used to evaluate many sums extended over divisors. …
    27.6.6 d | n ϕ k ( d ) ( n d ) k = 1 k + 2 k + + n k ,
    20: 24.6 Explicit Formulas
    24.6.1 B 2 n = k = 2 2 n + 1 ( 1 ) k 1 k ( 2 n + 1 k ) j = 1 k 1 j 2 n ,
    24.6.2 B n = 1 n + 1 k = 1 n j = 1 k ( 1 ) j j n ( n + 1 k j ) / ( n k ) ,
    24.6.3 B 2 n = k = 1 n ( k 1 ) ! k ! ( 2 k + 1 ) ! j = 1 k ( 1 ) j 1 ( 2 k k + j ) j 2 n .
    24.6.4 E 2 n = k = 1 n 1 2 k 1 j = 1 k ( 1 ) j ( 2 k k j ) j 2 n ,
    24.6.9 B n = k = 0 n 1 k + 1 j = 0 k ( 1 ) j ( k j ) j n ,