About the Project

monotonic weight function

AdvancedHelp

(0.003 seconds)

7 matching pages

1: 18.14 Inequalities
18.14.3_5 ( 1 2 ( 1 + x ) ) β / 2 | P n ( α , β ) ( x ) | P n ( α , β ) ( 1 ) = ( α + 1 ) n n ! , 1 x 1 , α , β 0 .
18.14.8 e 1 2 x | L n ( α ) ( x ) | L n ( α ) ( 0 ) = ( α + 1 ) n n ! , 0 x < , α 0 .
2: 18.2 General Orthogonal Polynomials
Monotonic Weight Functions
3: Bibliography
  • M. Abramowitz (1954) Regular and irregular Coulomb wave functions expressed in terms of Bessel-Clifford functions. J. Math. Physics 33, pp. 111–116.
  • Z. Altaç (1996) Integrals involving Bickley and Bessel functions in radiative transfer, and generalized exponential integral functions. J. Heat Transfer 118 (3), pp. 789–792.
  • H. Alzer and S. Qiu (2004) Monotonicity theorems and inequalities for the complete elliptic integrals. J. Comput. Appl. Math. 172 (2), pp. 289–312.
  • Y. Ameur and J. Cronvall (2023) Szegő Type Asymptotics for the Reproducing Kernel in Spaces of Full-Plane Weighted Polynomials. Comm. Math. Phys. 398 (3), pp. 1291–1348.
  • G. D. Anderson, M. K. Vamanamurthy, and M. Vuorinen (1992a) Functional inequalities for hypergeometric functions and complete elliptic integrals. SIAM J. Math. Anal. 23 (2), pp. 512–524.
  • 4: Bibliography L
  • A. Laforgia and M. E. Muldoon (1988) Monotonicity properties of zeros of generalized Airy functions. Z. Angew. Math. Phys. 39 (2), pp. 267–271.
  • A. Laforgia and S. Sismondi (1988) Monotonicity results and inequalities for the gamma and error functions. J. Comput. Appl. Math. 23 (1), pp. 25–33.
  • L. J. Landau (2000) Bessel functions: Monotonicity and bounds. J. London Math. Soc. (2) 61 (1), pp. 197–215.
  • J. T. Lewis and M. E. Muldoon (1977) Monotonicity and convexity properties of zeros of Bessel functions. SIAM J. Math. Anal. 8 (1), pp. 171–178.
  • L. Lorch and P. Szegő (1964) Monotonicity of the differences of zeros of Bessel functions as a function of order. Proc. Amer. Math. Soc. 15 (1), pp. 91–96.
  • 5: Bibliography K
  • T. Kasuga and R. Sakai (2003) Orthonormal polynomials with generalized Freud-type weights. J. Approx. Theory 121 (1), pp. 13–53.
  • K. S. Kölbig (1970) Complex zeros of an incomplete Riemann zeta function and of the incomplete gamma function. Math. Comp. 24 (111), pp. 679–696.
  • T. H. Koornwinder (1984b) Orthogonal polynomials with weight function ( 1 x ) α ( 1 + x ) β + M δ ( x + 1 ) + N δ ( x 1 ) . Canad. Math. Bull. 27 (2), pp. 205–214.
  • S. Koumandos and M. Lamprecht (2010) Some completely monotonic functions of positive order. Math. Comp. 79 (271), pp. 1697–1707.
  • T. Kriecherbauer and K. T.-R. McLaughlin (1999) Strong asymptotics of polynomials orthogonal with respect to Freud weights. Internat. Math. Res. Notices 1999 (6), pp. 299–333.
  • 6: 3.11 Approximation Techniques
    Since L 0 = 1 , L n is a monotonically increasing function of n , and (for example) L 1000 = 4.07 , this means that in practice the gain in replacing a truncated Chebyshev-series expansion by the corresponding minimax polynomial approximation is hardly worthwhile. …
    §3.11(iii) Minimax Rational Approximations
    Then the minimax (or best uniform) rational approximation … Then (3.11.29) is replaced by …
    7: 1.4 Calculus of One Variable
    §1.4(i) Monotonicity
    Each of the preceding four cases is classified as monotonic; sometimes strictly monotonic is used for the strictly increasing or strictly decreasing cases. … For α ( x ) nondecreasing on the closure I of an interval ( a , b ) , the measure d α is absolutely continuous if α ( x ) is continuous and there exists a weight function w ( x ) 0 , Riemann (or Lebesgue) integrable on finite subintervals of I , such that … For f ( x ) monotonic and ϕ ( x ) integrable on [ a , b ] , there exists c [ a , b ] , such that …