About the Project

integration by parts

AdvancedHelp

(0.003 seconds)

11—20 of 77 matching pages

11: 2.10 Sums and Sequences
β–Ί
2.10.2 j = a n f ⁑ ( j ) = a n f ⁑ ( x ) ⁒ d x + 1 2 ⁒ f ⁑ ( a ) + 1 2 ⁒ f ⁑ ( n ) 2 ⁒ 0 ⁑ ( f ⁑ ( a + i ⁒ y ) ) e 2 ⁒ Ο€ ⁒ y 1 ⁒ d y + s = 1 m B 2 ⁒ s ( 2 ⁒ s ) ! ⁒ f ( 2 ⁒ s 1 ) ⁑ ( n ) + 2 ⁒ ( 1 ) m ( 2 ⁒ m ) ! ⁒ 0 ⁑ ( f ( 2 ⁒ m ) ⁑ ( n + i ⁒ Ο‘ n ⁒ y ) ) ⁒ y 2 ⁒ m ⁒ d y e 2 ⁒ Ο€ ⁒ y 1 ,
β–ΊThis identity can be used to find asymptotic approximations for large n when the factor v j changes slowly with j , and u j is oscillatory; compare the approximation of Fourier integrals by integration by parts in §2.3(i). … β–ΊIn these circumstances the integrals in (2.10.28) are integrable by parts m times, yielding …
12: 5.9 Integral Representations
β–Ί
5.9.10_1 Ln ⁑ Ξ“ ⁑ ( z ) = ( z 1 2 ) ⁒ ln ⁑ z z + 1 2 ⁒ ln ⁑ ( 2 ⁒ Ο€ ) z Ο€ ⁒ 0 ln ⁑ ( 1 e 2 ⁒ Ο€ ⁒ t ) t 2 + z 2 ⁒ d t ,
13: 2.11 Remainder Terms; Stokes Phenomenon
β–ΊBy integration by parts2.3(i)) …
14: 25.11 Hurwitz Zeta Function
β–Ί
25.11.7 ΢ ⁑ ( s , a ) = 1 a s + 1 ( 1 + a ) s ⁒ ( 1 2 + 1 + a s 1 ) + k = 1 n ( s + 2 ⁒ k 2 2 ⁒ k 1 ) ⁒ B 2 ⁒ k 2 ⁒ k ⁒ 1 ( 1 + a ) s + 2 ⁒ k 1 ( s + 2 ⁒ n 2 ⁒ n + 1 ) ⁒ 1 B ~ 2 ⁒ n + 1 ⁑ ( x ) ( x + a ) s + 2 ⁒ n + 1 ⁒ d x , s 1 , a > 0 , n = 1 , 2 , 3 , , ⁑ s > 2 ⁒ n .
β–Ί
25.11.30 ΞΆ ⁑ ( s , a ) = Ξ“ ⁑ ( 1 s ) 2 ⁒ Ο€ ⁒ i ⁒ ( 0 + ) e a ⁒ z ⁒ z s 1 1 e z ⁒ d z , s 1 , ⁑ a > 0 ,
15: 18.18 Sums
β–Ί
Expansion of L 2 functions
β–ΊIn all three cases of Jacobi, Laguerre and Hermite, if f ⁑ ( x ) is L 2 on the corresponding interval with respect to the corresponding weight function and if a n , b n , d n are given by (18.18.1), (18.18.5), (18.18.7), respectively, then the respective series expansions (18.18.2), (18.18.4), (18.18.6) are valid with the sums converging in L 2 sense. … β–ΊSee (18.17.45) and (18.17.49) for integrated forms of (18.18.22) and (18.18.23), respectively. …
16: 2.5 Mellin Transform Methods
β–Ί
2.5.6 I ⁑ ( x ) = d < ⁑ z < c res [ x z ⁒ β„³ ⁑ f ⁑ ( 1 z ) ⁒ β„³ ⁑ h ⁑ ( z ) ] + E ⁑ ( x ) ,
β–Ί
2.5.42 I 2 ⁑ ( x ) = ⁑ Ξ² 0 ⁑ z 1 res [ x z ⁒ Ξ“ ⁑ ( 1 z ) ⁒ β„³ ⁑ h 2 ⁑ ( z ) ] + 1 2 ⁒ Ο€ ⁒ i ⁒ ρ i ⁒ ρ + i ⁒ x z ⁒ Ξ“ ⁑ ( 1 z ) ⁒ β„³ ⁑ h 2 ⁑ ( z ) ⁒ d z .
β–Ί
2.5.43 β„’ ⁑ h ⁑ ( ΞΆ ) = β„³ ⁑ h 1 ⁑ ( 1 ) + ⁑ Ξ² 0 ⁑ z 1 res [ ΞΆ z 1 ⁒ Ξ“ ⁑ ( 1 z ) ⁒ β„³ ⁑ h 2 ⁑ ( z ) ] + 1 < ⁑ z < l res [ ΞΆ z 1 ⁒ Ξ“ ⁑ ( 1 z ) ⁒ β„³ ⁑ h ⁑ ( z ) ] + 1 2 ⁒ Ο€ ⁒ i ⁒ l Ξ΄ i ⁒ l Ξ΄ + i ⁒ ΞΆ z 1 ⁒ Ξ“ ⁑ ( 1 z ) ⁒ β„³ ⁑ h ⁑ ( z ) ⁒ d z ,
β–Ί
2.5.45 β„’ ⁑ h ⁑ ( ΞΆ ) = 0 e ΞΆ ⁒ t 1 + t ⁒ d t , ⁑ ΞΆ > 0 .
17: 21.9 Integrable Equations
β–ΊRiemann theta functions arise in the study of integrable differential equations that have applications in many areas, including fluid mechanics (Ablowitz and Segur (1981, Chapter 4)), magnetic monopoles (Ercolani and Sinha (1989)), and string theory (Deligne et al. (1999, Part 3)). …
18: 1.18 Linear Second Order Differential Operators and Eigenfunction Expansions
β–ΊWe integrate by parts twice giving: …
19: 8.6 Integral Representations
β–Ί
8.6.3 γ ⁑ ( a , z ) = z a ⁒ 0 exp ⁑ ( a ⁒ t z ⁒ e t ) ⁒ d t , ⁑ a > 0 .
β–Ί
8.6.7 Ξ“ ⁑ ( a , z ) = z a ⁒ 0 exp ⁑ ( a ⁒ t z ⁒ e t ) ⁒ d t , ⁑ z > 0 .
β–Ί
8.6.9 Ξ“ ⁑ ( a , z ⁒ e ± Ο€ ⁒ i ) = e z ⁒ e βˆ“ Ο€ ⁒ i ⁒ a Ξ“ ⁑ ( 1 + a ) ⁒ 0 t a ⁒ e z ⁒ t t 1 ⁒ d t , ⁑ z > 0 , ⁑ a > 1 ,
β–Ίwhere the integration path passes above or below the pole at t = 1 , according as upper or lower signs are taken. … β–ΊIn (8.6.10)–(8.6.12), c is a real constant and the path of integration is indented (if necessary) so that in the case of (8.6.10) it separates the poles of the gamma function from the pole at s = a , in the case of (8.6.11) it is to the right of all poles, and in the case of (8.6.12) it separates the poles of the gamma function from the poles at s = 0 , 1 , 2 , . …
20: 4.38 Inverse Hyperbolic Functions: Further Properties
β–Ί
4.38.2 arcsinh ⁑ z = ln ⁑ ( 2 ⁒ z ) + 1 2 ⁒ 1 2 ⁒ z 2 1 3 2 4 ⁒ 1 4 ⁒ z 4 + 1 3 5 2 4 6 ⁒ 1 6 ⁒ z 6 β‹― , ⁑ z > 0 , | z | > 1 .
β–Ί
4.38.4 arccosh ⁑ z = ( 2 ⁒ ( z 1 ) ) 1 / 2 ⁒ ( 1 + n = 1 ( 1 ) n ⁒ 1 3 5 ⁒ β‹― ⁒ ( 2 ⁒ n 1 ) 2 2 ⁒ n ⁒ n ! ⁒ ( 2 ⁒ n + 1 ) ⁒ ( z 1 ) n ) , ⁑ z > 0 , | z 1 | 2 .
β–Ί
4.38.7 arctanh ⁑ z = z 1 z 2 ⁒ ( 1 + 2 3 ⁒ z 2 z 2 1 + 2 4 3 5 ⁒ ( z 2 z 2 1 ) 2 + β‹― ) , ⁑ ( z 2 ) < 1 2 ,
β–Ί
4.38.10 d d z ⁑ arccosh ⁑ z = ± ( z 2 1 ) 1 / 2 , ⁑ z β‰· 0 .
β–Ί
4.38.12 d d z ⁑ arccsch ⁑ z = βˆ“ 1 z ⁒ ( 1 + z 2 ) 1 / 2 , ⁑ z β‰· 0 .