About the Project
8 Incomplete Gamma and Related FunctionsIncomplete Gamma Functions

§8.6 Integral Representations

Contents
  1. §8.6(i) Integrals Along the Real Line
  2. §8.6(ii) Contour Integrals
  3. §8.6(iii) Compendia

§8.6(i) Integrals Along the Real Line

For the Bessel function Jν(z) and modified Bessel function Kν(z), see §§10.2(ii) and 10.25(ii).

8.6.1 γ(a,z) =zasin(πa)0πezcostcos(at+zsint)dt,
a,
8.6.2 γ(a,z) =z12a0ett12a1Ja(2zt)dt,
a>0.
8.6.3 γ(a,z) =za0exp(atzet)dt,
a>0.
8.6.4 Γ(a,z) =zaezΓ(1a)0taetz+tdt,
|phz|<π, a<1,
8.6.5 Γ(a,z) =zaez0ezt(1+t)1adt,
z>0,
8.6.6 Γ(a,z) =2z12aezΓ(1a)0ett12aKa(2zt)dt,
a<1,
8.6.7 Γ(a,z) =za0exp(atzet)dt,
z>0.

§8.6(ii) Contour Integrals

8.6.8 γ(a,z)=iza2sin(πa)1(0+)ta1eztdt,
z0, a;

ta1 takes its principal value where the path intersects the positive real axis, and is continuous elsewhere on the path.

8.6.9 Γ(a,ze±πi)=ezeπiaΓ(1+a)0taeztt1dt,
z>0, a>1,

where the integration path passes above or below the pole at t=1, according as upper or lower signs are taken.

Mellin–Barnes Integrals

In (8.6.10)–(8.6.12), c is a real constant and the path of integration is indented (if necessary) so that in the case of (8.6.10) it separates the poles of the gamma function from the pole at s=a, in the case of (8.6.11) it is to the right of all poles, and in the case of (8.6.12) it separates the poles of the gamma function from the poles at s=0,1,2,.

8.6.10 γ(a,z)=12πicic+iΓ(s)aszasds,
|phz|<12π, a0,1,2,,
8.6.11 Γ(a,z) =12πicic+iΓ(s+a)zssds,
|phz|<12π,
8.6.12 Γ(a,z) =za1ezΓ(1a)12πicic+iΓ(s+1a)πzssin(πs)ds,
|phz|<32π, a1,2,3,.

§8.6(iii) Compendia

For collections of integral representations of γ(a,z) and Γ(a,z) see Erdélyi et al. (1953b, §9.3), Oberhettinger (1972, pp. 68–69), Oberhettinger and Badii (1973, pp. 309–312), Prudnikov et al. (1992b, §3.10), and Temme (1996b, pp. 282–283).