About the Project

electromagnetic theory

AdvancedHelp

(0.001 seconds)

1—10 of 14 matching pages

1: 6.17 Physical Applications
§6.17 Physical Applications
Lebedev (1965) gives an application to electromagnetic theory (radiation of a linear half-wave oscillator), in which sine and cosine integrals are used.
2: 9.16 Physical Applications
Extensive use is made of Airy functions in investigations in the theory of electromagnetic diffraction and radiowave propagation (Fock (1965)). …
3: Bibliography J
  • D. S. Jones (1964) The Theory of Electromagnetism. International Series of Monographs on Pure and Applied Mathematics, Vol. 47. A Pergamon Press Book, The Macmillan Co., New York.
  • 4: Bibliography B
  • R. Becker and F. Sauter (1964) Electromagnetic Fields and Interactions. Vol. I, Blaisdell, New York.
  • M. Born and E. Wolf (1999) Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light. 7th edition, Cambridge University Press, Cambridge.
  • 5: Bibliography C
  • D. Colton and R. Kress (1998) Inverse Acoustic and Electromagnetic Scattering Theory. 2nd edition, Applied Mathematical Sciences, Vol. 93, Springer-Verlag, Berlin.
  • 6: 25.17 Physical Applications
    Quantum field theory often encounters formally divergent sums that need to be evaluated by a process of regularization: for example, the energy of the electromagnetic vacuum in a confined space (Casimir–Polder effect). …
    7: 10.73 Physical Applications
    This equation governs problems in acoustic and electromagnetic wave propagation. …It is fundamental in the study of electromagnetic wave transmission. …
    §10.73(ii) Spherical Bessel Functions
    Accordingly, the spherical Bessel functions appear in all problems in three dimensions with spherical symmetry involving the scattering of electromagnetic radiation. …
    8: Bibliography K
  • E. Kanzieper (2002) Replica field theories, Painlevé transcendents, and exact correlation functions. Phys. Rev. Lett. 89 (25), pp. (250201–1)–(250201–4).
  • M. Kerker (1969) The Scattering of Light and Other Electromagnetic Radiation. Academic Press, New York.
  • A. Kneser (1927) Neue Untersuchungen einer Reihe aus der Theorie der elliptischen Funktionen. Journal für die Reine und Angenwandte Mathematik 158, pp. 209–218 (German).
  • G. C. Kokkorakis and J. A. Roumeliotis (1998) Electromagnetic eigenfrequencies in a spheroidal cavity (calculation by spheroidal eigenvectors). J. Electromagn. Waves Appl. 12 (12), pp. 1601–1624.
  • E. J. Konopinski (1981) Electromagnetic Fields and Relativistic Particles. International Series in Pure and Applied Physics, McGraw-Hill Book Co., New York.
  • 9: 28.33 Physical Applications
  • McLachlan (1947, Chapters XVI–XIX) for applications of the wave equation to vibrational systems, electrical and thermal diffusion, electromagnetic wave guides, elliptical cylinders in viscous fluids, and diffraction of sound and electromagnetic waves.

  • Meixner and Schäfke (1954, §§4.3, 4.4) for elliptic membranes and electromagnetic waves.

  • Alhargan and Judah (1992), Germey (1964), Ragheb et al. (1991), and Sips (1967) for electromagnetic waves.

  • Aly et al. (1975) for scattering theory.

  • Fukui and Horiguchi (1992) for quantum theory.

  • 10: Bibliography S
  • J. L. Schiff (1999) The Laplace Transform: Theory and Applications. Undergraduate Texts in Mathematics, Springer-Verlag, New York.
  • M. J. Seaton (1983) Quantum defect theory. Rep. Prog. Phys. 46 (2), pp. 167–257.
  • A. Sidi (2003) Practical Extrapolation Methods: Theory and Applications. Cambridge Monographs on Applied and Computational Mathematics, Vol. 10, Cambridge University Press, Cambridge.
  • C. L. Siegel (1935) Über die analytische Theorie der quadratischen Formen. Ann. of Math. (2) 36 (3), pp. 527–606.
  • G. S. Smith (1997) An Introduction to Classical Electromagnetic Radiation. Cambridge University Press, Cambridge-New York.