About the Project

Whipple 3F2 sum

AdvancedHelp

(0.003 seconds)

1—10 of 660 matching pages

1: 34.2 Definition: 3 ⁒ j Symbol
§34.2 Definition: 3 ⁒ j Symbol
β–ΊThe corresponding projective quantum numbers m 1 , m 2 , m 3 are given by … β–ΊWhen both conditions are satisfied the 3 ⁒ j symbol can be expressed as the finite sumβ–Ίwhere F 2 3 is defined as in §16.2. β–ΊFor alternative expressions for the 3 ⁒ j symbol, written either as a finite sum or as other terminating generalized hypergeometric series F 2 3 of unit argument, see Varshalovich et al. (1988, §§8.21, 8.24–8.26).
2: 14.19 Toroidal (or Ring) Functions
β–Ί
14.19.2 P Ξ½ 1 2 ΞΌ ⁑ ( cosh ⁑ ΞΎ ) = Ξ“ ⁑ ( 1 2 ΞΌ ) Ο€ 1 / 2 ⁒ ( 1 e 2 ⁒ ΞΎ ) ΞΌ ⁒ e ( Ξ½ + ( 1 / 2 ) ) ⁒ ΞΎ ⁒ 𝐅 ⁑ ( 1 2 ΞΌ , 1 2 + Ξ½ ΞΌ ; 1 2 ⁒ ΞΌ ; 1 e 2 ⁒ ΞΎ ) , ΞΌ 1 2 , 3 2 , 5 2 , .
β–Ί
§14.19(iv) Sums
β–Ί
14.19.6 𝑸 1 2 ΞΌ ⁑ ( cosh ⁑ ΞΎ ) + 2 ⁒ n = 1 Ξ“ ⁑ ( ΞΌ + n + 1 2 ) Ξ“ ⁑ ( ΞΌ + 1 2 ) ⁒ 𝑸 n 1 2 ΞΌ ⁑ ( cosh ⁑ ΞΎ ) ⁒ cos ⁑ ( n ⁒ Ο• ) = ( 1 2 ⁒ Ο€ ) 1 / 2 ⁒ ( sinh ⁑ ΞΎ ) ΞΌ ( cosh ⁑ ΞΎ cos ⁑ Ο• ) ΞΌ + ( 1 / 2 ) , ⁑ ΞΌ > 1 2 .
β–Ί
§14.19(v) Whipple’s Formula for Toroidal Functions
3: 16.4 Argument Unity
β–Ί
Lerch Sum
β–Ί
Watson’s Sum
β–Ί
Whipple’s Sum
β–Ί
DΕΎrbasjan’s Sum
β–ΊA different type of transformation is that of Whipple: …
4: 16.6 Transformations of Variable
β–Ί
16.6.1 F 2 3 ⁑ ( a , b , c a b + 1 , a c + 1 ; z ) = ( 1 z ) a ⁒ F 2 3 ⁑ ( a b c + 1 , 1 2 ⁒ a , 1 2 ⁒ ( a + 1 ) a b + 1 , a c + 1 ; 4 ⁒ z ( 1 z ) 2 ) .
β–Ί
16.6.2 F 2 3 ⁑ ( a , 2 ⁒ b a 1 , 2 2 ⁒ b + a b , a b + 3 2 ; z 4 ) = ( 1 z ) a ⁒ F 2 3 ⁑ ( 1 3 ⁒ a , 1 3 ⁒ a + 1 3 , 1 3 ⁒ a + 2 3 b , a b + 3 2 ; 27 ⁒ z 4 ⁒ ( 1 z ) 3 ) .
5: Bibliography W
β–Ί
  • X. Wang and A. K. Rathie (2013) Extension of a quadratic transformation due to Whipple with an application. Adv. Difference Equ., pp. 2013:157, 8.
  • β–Ί
  • J. V. Wehausen and E. V. Laitone (1960) Surface Waves. In Handbuch der Physik, Vol. 9, Part 3, pp. 446–778.
  • β–Ί
  • G. Weiss (1965) Harmonic Analysis. In Studies in Real and Complex Analysis, I. I. Hirschman (Ed.), Studies in Mathematics, Vol. 3, pp. 124–178.
  • β–Ί
  • F. J. W. Whipple (1927) Some transformations of generalized hypergeometric series. Proc. London Math. Soc. (2) 26 (2), pp. 257–272.
  • β–Ί
  • J. A. Wilson (1991) Asymptotics for the F 3 4 polynomials. J. Approx. Theory 66 (1), pp. 58–71.
  • 6: 17.9 Further Transformations of Ο• r r + 1 Functions
    β–Ί
    §17.9(ii) Ο• 2 3 Ο• 2 3
    β–Ί
    Transformations of Ο• 2 3 -Series
    β–Ί
    Sears’ Balanced Ο• 3 4 Transformations
    β–Ί
    Watson’s q -Analog of Whipple’s Theorem
    β–Ί
    §17.9(iv) Bibasic Series
    7: 17.7 Special Cases of Higher Ο• s r Functions
    β–Ί
    q -Analog of Dixon’s F 2 3 ⁑ ( 1 ) Sum
    β–Ί
    Gasper–Rahman q -Analog of Watson’s F 2 3 Sum
    β–Ί
    Gasper–Rahman q -Analog of Whipple’s F 2 3 Sum
    β–Ί
    Andrews’ q -Analog of the Terminating Version of Whipple’s F 2 3 Sum (16.4.7)
    β–Ί
    Second q -Analog of Bailey’s F 3 4 ⁑ ( 1 ) Sum
    8: 14.9 Connection Formulas
    β–Ί
    §14.9(iv) Whipple’s Formula
    9: Bibliography M
    β–Ί
  • S. M. Markov (1981) On the interval computation of elementary functions. C. R. Acad. Bulgare Sci. 34 (3), pp. 319–322.
  • β–Ί
  • M. Micu (1968) Recursion relations for the 3 - j symbols. Nuclear Physics A 113 (1), pp. 215–220.
  • β–Ί
  • G. F. Miller (1966) On the convergence of the Chebyshev series for functions possessing a singularity in the range of representation. SIAM J. Numer. Anal. 3 (3), pp. 390–409.
  • β–Ί
  • S. C. Milne (1994) A q -analog of a Whipple’s transformation for hypergeometric series in U ⁒ ( n ) . Adv. Math. 108 (1), pp. 1–76.
  • β–Ί
  • D. S. MitrinoviΔ‡ (1970) Analytic Inequalities. Springer-Verlag, New York.
  • 10: Errata
    β–Ί
  • Equation (18.38.3)
    18.38.3 m = 0 n P m ( α , 0 ) ⁑ ( x ) = ( α + 2 ) n n ! ⁒ F 2 3 ⁑ ( n , n + α + 2 , 1 2 ⁒ ( α + 1 ) α + 1 , 1 2 ⁒ ( α + 3 ) ; 1 2 ⁒ ( 1 x ) ) 0 , x 1 , α 2 , n = 0 , 1 ,

    This equation was updated to include the value of the sum in terms of the F 2 3 function. Also the constraint was previously 1 x 1 , Ξ± > 1 .

  • β–Ί
  • Subsection 17.7(iii)

    The title of the paragraph which was previously “Andrews’ Terminating q -Analog of (17.7.8)” has been changed to “Andrews’ q -Analog of the Terminating Version of Watson’s F 2 3 Sum (16.4.6)”. The title of the paragraph which was previously “Andrews’ Terminating q -Analog” has been changed to “Andrews’ q -Analog of the Terminating Version of Whipple’s F 2 3 Sum (16.4.7)”.

  • β–Ί
  • Equations (22.9.8), (22.9.9) and (22.9.10)
    22.9.8 s 1 , 3 ( 4 ) ⁒ s 2 , 3 ( 4 ) + s 2 , 3 ( 4 ) ⁒ s 3 , 3 ( 4 ) + s 3 , 3 ( 4 ) ⁒ s 1 , 3 ( 4 ) = κ 2 1 k 2
    22.9.9 c 1 , 3 ( 4 ) ⁒ c 2 , 3 ( 4 ) + c 2 , 3 ( 4 ) ⁒ c 3 , 3 ( 4 ) + c 3 , 3 ( 4 ) ⁒ c 1 , 3 ( 4 ) = κ ⁒ ( κ + 2 ) ( 1 + κ ) 2
    22.9.10 d 1 , 3 ( 2 ) ⁒ d 2 , 3 ( 2 ) + d 2 , 3 ( 2 ) ⁒ d 3 , 3 ( 2 ) + d 3 , 3 ( 2 ) ⁒ d 1 , 3 ( 2 ) = d 1 , 3 ( 4 ) ⁒ d 2 , 3 ( 4 ) + d 2 , 3 ( 4 ) ⁒ d 3 , 3 ( 4 ) + d 3 , 3 ( 4 ) ⁒ d 1 , 3 ( 4 ) = κ ⁒ ( κ + 2 )

    Originally all the functions s m , p ( 4 ) , c m , p ( 4 ) , d m , p ( 2 ) and d m , p ( 4 ) in Equations (22.9.8), (22.9.9) and (22.9.10) were written incorrectly with p = 2 . These functions have been corrected so that they are written with p = 3 . In the sentence just below (22.9.10), the expression s m , 2 ( 4 ) ⁒ s n , 2 ( 4 ) has been corrected to read s m , p ( 4 ) ⁒ s n , p ( 4 ) .

    Reported by Juan Miguel Nieto on 2019-11-07

  • β–Ί
  • Equation (34.3.7)
    34.3.7 ( j 1 j 2 j 3 j 1 j 1 m 3 m 3 ) = ( 1 ) j 1 j 2 m 3 ⁒ ( ( 2 ⁒ j 1 ) ! ⁒ ( j 1 + j 2 + j 3 ) ! ⁒ ( j 1 + j 2 + m 3 ) ! ⁒ ( j 3 m 3 ) ! ( j 1 + j 2 + j 3 + 1 ) ! ⁒ ( j 1 j 2 + j 3 ) ! ⁒ ( j 1 + j 2 j 3 ) ! ⁒ ( j 1 + j 2 m 3 ) ! ⁒ ( j 3 + m 3 ) ! ) 1 2

    In the original equation the prefactor of the above 3j symbol read ( 1 ) j 2 + j 3 + m 3 . It is now replaced by its correct value ( 1 ) j 1 j 2 m 3 .

    Reported 2014-06-12 by James Zibin.

  • β–Ί
  • Equation (34.4.2)
    34.4.2 { j 1 j 2 j 3 l 1 l 2 l 3 } = Ξ” ⁒ ( j 1 ⁒ j 2 ⁒ j 3 ) ⁒ Ξ” ⁒ ( j 1 ⁒ l 2 ⁒ l 3 ) ⁒ Ξ” ⁒ ( l 1 ⁒ j 2 ⁒ l 3 ) ⁒ Ξ” ⁒ ( l 1 ⁒ l 2 ⁒ j 3 ) ⁒ s ( 1 ) s ⁒ ( s + 1 ) ! ( s j 1 j 2 j 3 ) ! ⁒ ( s j 1 l 2 l 3 ) ! ⁒ ( s l 1 j 2 l 3 ) ! ⁒ ( s l 1 l 2 j 3 ) ! ⁒ 1 ( j 1 + j 2 + l 1 + l 2 s ) ! ⁒ ( j 2 + j 3 + l 2 + l 3 s ) ! ⁒ ( j 3 + j 1 + l 3 + l 1 s ) !

    Originally the factor Ξ” ⁒ ( j 1 ⁒ j 2 ⁒ j 3 ) ⁒ Ξ” ⁒ ( j 1 ⁒ l 2 ⁒ l 3 ) ⁒ Ξ” ⁒ ( l 1 ⁒ j 2 ⁒ l 3 ) ⁒ Ξ” ⁒ ( l 1 ⁒ l 2 ⁒ j 3 ) was missing in this equation.

    Reported 2012-12-31 by Yu Lin.