14.8 Behavior at Singularities14.10 Recurrence Relations and Derivatives

§14.9 Connection Formulas

Contents

§14.9(i) Connections Between \mathop{\mathsf{P}^{{\pm\mu}}_{{\nu}}\/}\nolimits\!\left(x\right), \mathop{\mathsf{P}^{{\pm\mu}}_{{-\nu-1}}\/}\nolimits\!\left(x\right), \mathop{\mathsf{Q}^{{\pm\mu}}_{{\nu}}\/}\nolimits\!\left(x\right), \mathop{\mathsf{Q}^{{\mu}}_{{-\nu-1}}\/}\nolimits\!\left(x\right)

14.9.1\frac{\pi\mathop{\sin\/}\nolimits\!\left(\mu\pi\right)}{2\mathop{\Gamma\/}\nolimits\!\left(\nu-\mu+1\right)}\mathop{\mathsf{P}^{{-\mu}}_{{\nu}}\/}\nolimits\!\left(x\right)=-\frac{1}{\mathop{\Gamma\/}\nolimits\!\left(\nu+\mu+1\right)}\mathop{\mathsf{Q}^{{\mu}}_{{\nu}}\/}\nolimits\!\left(x\right)+\frac{\mathop{\cos\/}\nolimits\!\left(\mu\pi\right)}{\mathop{\Gamma\/}\nolimits\!\left(\nu-\mu+1\right)}\mathop{\mathsf{Q}^{{-\mu}}_{{\nu}}\/}\nolimits\!\left(x\right).
14.9.2\frac{2\mathop{\sin\/}\nolimits\!\left(\mu\pi\right)}{\pi\mathop{\Gamma\/}\nolimits\!\left(\nu-\mu+1\right)}\mathop{\mathsf{Q}^{{-\mu}}_{{\nu}}\/}\nolimits\!\left(x\right)=\frac{1}{\mathop{\Gamma\/}\nolimits\!\left(\nu+\mu+1\right)}\mathop{\mathsf{P}^{{\mu}}_{{\nu}}\/}\nolimits\!\left(x\right)-\frac{\mathop{\cos\/}\nolimits\!\left(\mu\pi\right)}{\mathop{\Gamma\/}\nolimits\!\left(\nu-\mu+1\right)}\mathop{\mathsf{P}^{{-\mu}}_{{\nu}}\/}\nolimits\!\left(x\right),
14.9.3\mathop{\mathsf{P}^{{-m}}_{{\nu}}\/}\nolimits\!\left(x\right)=(-1)^{m}\frac{\mathop{\Gamma\/}\nolimits\!\left(\nu-m+1\right)}{\mathop{\Gamma\/}\nolimits\!\left(\nu+m+1\right)}\mathop{\mathsf{P}^{{m}}_{{\nu}}\/}\nolimits\!\left(x\right),
14.9.4\mathop{\mathsf{Q}^{{-m}}_{{\nu}}\/}\nolimits\!\left(x\right)=(-1)^{m}\frac{\mathop{\Gamma\/}\nolimits\!\left(\nu-m+1\right)}{\mathop{\Gamma\/}\nolimits\!\left(\nu+m+1\right)}\mathop{\mathsf{Q}^{{m}}_{{\nu}}\/}\nolimits\!\left(x\right),\nu\neq m-1,m-2,\dots.
14.9.5
\mathop{\mathsf{P}^{{\mu}}_{{-\nu-1}}\/}\nolimits\!\left(x\right)=\mathop{\mathsf{P}^{{\mu}}_{{\nu}}\/}\nolimits\!\left(x\right),
\mathop{\mathsf{P}^{{-\mu}}_{{-\nu-1}}\/}\nolimits\!\left(x\right)=\mathop{\mathsf{P}^{{-\mu}}_{{\nu}}\/}\nolimits\!\left(x\right),
14.9.6\pi\mathop{\cos\/}\nolimits\!\left(\nu\pi\right)\mathop{\cos\/}\nolimits\!\left(\mu\pi\right)\mathop{\mathsf{P}^{{\mu}}_{{\nu}}\/}\nolimits\!\left(x\right)=\mathop{\sin\/}\nolimits\!\left((\nu+\mu)\pi\right)\mathop{\mathsf{Q}^{{\mu}}_{{\nu}}\/}\nolimits\!\left(x\right)-\mathop{\sin\/}\nolimits\!\left((\nu-\mu)\pi\right)\mathop{\mathsf{Q}^{{\mu}}_{{-\nu-1}}\/}\nolimits\!\left(x\right).

§14.9(iii) Connections Between \mathop{P^{{\pm\mu}}_{{\nu}}\/}\nolimits\!\left(x\right), \mathop{P^{{\pm\mu}}_{{-\nu-1}}\/}\nolimits\!\left(x\right), \mathop{\boldsymbol{Q}^{{\pm\mu}}_{{\nu}}\/}\nolimits\!\left(x\right), \mathop{\boldsymbol{Q}^{{\mu}}_{{-\nu-1}}\/}\nolimits\!\left(x\right)