22.8 Addition Theorems22.10 Maclaurin Series

§22.9 Cyclic Identities

Contents

§22.9(i) Notation

The following notation is a generalization of that of Khare and Sukhatme (2002).

Throughout this subsection m and p are positive integers with 1\leq m\leq p.

22.9.1s_{{m,p}}^{{(2)}}=\mathop{\mathrm{sn}\/}\nolimits\left(z+2p^{{-1}}(m-1)\mathop{K\/}\nolimits\!\left(k\right),k\right),
22.9.2c_{{m,p}}^{{(2)}}=\mathop{\mathrm{cn}\/}\nolimits\left(z+2p^{{-1}}(m-1)\mathop{K\/}\nolimits\!\left(k\right),k\right),
22.9.3d_{{m,p}}^{{(2)}}=\mathop{\mathrm{dn}\/}\nolimits\left(z+2p^{{-1}}(m-1)\mathop{K\/}\nolimits\!\left(k\right),k\right),
22.9.4s_{{m,p}}^{{(4)}}=\mathop{\mathrm{sn}\/}\nolimits\left(z+4p^{{-1}}(m-1)\mathop{K\/}\nolimits\!\left(k\right),k\right),
22.9.5c_{{m,p}}^{{(4)}}=\mathop{\mathrm{cn}\/}\nolimits\left(z+4p^{{-1}}(m-1)\mathop{K\/}\nolimits\!\left(k\right),k\right),
22.9.6d_{{m,p}}^{{(4)}}=\mathop{\mathrm{dn}\/}\nolimits\left(z+4p^{{-1}}(m-1)\mathop{K\/}\nolimits\!\left(k\right),k\right).

In the remainder of this section the rank of an identity is the largest number of elliptic function factors in any term of the identity. The value of p determines the number of points in the identity. The argument z is suppressed in the above notation, as all cyclic identities are independent of z.

§22.9(ii) Typical Identities of Rank 2

In this subsection 1\leq m\leq p and 1\leq n\leq p.

Three Points

These identities are cyclic in the sense that each of the indices m,n in the first product of, for example, the form s_{{m,2}}^{{(4)}}s_{{n,2}}^{{(4)}} are simultaneously permuted in the cyclic order: m\to m+1\to m+2\to\cdots p\to 1\to 2\to\cdots m-1; n\to n+1\to n+2\to\cdots p\to 1\to 2\to\cdots n-1. Many of the identities that follow also have this property.

§22.9(iii) Typical Identities of Rank 3

Two Points

Three Points

With \kappa defined as in (22.9.7),

22.9.13s_{{1,3}}^{{(4)}}s_{{2,3}}^{{(4)}}s_{{3,3}}^{{(4)}}=-\frac{1}{1-\kappa^{2}}\left(s_{{1,3}}^{{(4)}}+s_{{2,3}}^{{(4)}}+s_{{3,3}}^{{(4)}}\right),
22.9.14c_{{1,3}}^{{(4)}}c_{{2,3}}^{{(4)}}c_{{3,3}}^{{(4)}}=\frac{\kappa^{2}}{1-\kappa^{2}}\left(c_{{1,3}}^{{(4)}}+c_{{2,3}}^{{(4)}}+c_{{3,3}}^{{(4)}}\right),
22.9.15d_{{1,3}}^{{(2)}}d_{{2,3}}^{{(2)}}d_{{3,3}}^{{(2)}}=\frac{\kappa^{2}+k^{2}-1}{1-\kappa^{2}}\left(d_{{1,3}}^{{(2)}}+d_{{2,3}}^{{(2)}}+d_{{3,3}}^{{(2)}}\right),
22.9.16s_{{1,3}}^{{(4)}}c_{{2,3}}^{{(4)}}c_{{3,3}}^{{(4)}}+s_{{2,3}}^{{(4)}}c_{{3,3}}^{{(4)}}c_{{1,3}}^{{(4)}}+s_{{3,3}}^{{(4)}}c_{{1,3}}^{{(4)}}c_{{2,3}}^{{(4)}}=\frac{\kappa(\kappa+2)}{1-\kappa^{2}}\left(s_{{1,3}}^{{(4)}}+s_{{2,3}}^{{(4)}}+s_{{3,3}}^{{(4)}}\right).

Four Points

§22.9(iv) Typical Identities of Rank 4

Three Points

Again with \kappa defined as in (22.9.7),

22.9.22s_{{1,3}}^{{(2)}}c_{{1,3}}^{{(2)}}d_{{2,3}}^{{(2)}}d_{{3,3}}^{{(2)}}+s_{{2,3}}^{{(2)}}c_{{2,3}}^{{(2)}}d_{{3,3}}^{{(2)}}d_{{1,3}}^{{(2)}}+s_{{3,3}}^{{(2)}}c_{{3,3}}^{{(2)}}d_{{1,3}}^{{(2)}}d_{{2,3}}^{{(2)}}=\frac{\kappa^{2}+k^{2}-1}{1-\kappa^{2}}\left(s_{{1,3}}^{{(2)}}c_{{1,3}}^{{(2)}}+s_{{2,3}}^{{(2)}}c_{{2,3}}^{{(2)}}+s_{{3,3}}^{{(2)}}c_{{3,3}}^{{(2)}}\right),
22.9.23s_{{1,3}}^{{(4)}}d_{{1,3}}^{{(4)}}c_{{2,3}}^{{(4)}}c_{{3,3}}^{{(4)}}+s_{{2,3}}^{{(4)}}d_{{2,3}}^{{(4)}}c_{{3,3}}^{{(4)}}c_{{1,3}}^{{(4)}}+s_{{3,3}}^{{(4)}}d_{{3,3}}^{{(4)}}c_{{1,3}}^{{(4)}}c_{{2,3}}^{{(4)}}=\frac{\kappa^{2}}{1-\kappa^{2}}\left(s_{{1,3}}^{{(4)}}d_{{1,3}}^{{(4)}}+s_{{2,3}}^{{(4)}}d_{{2,3}}^{{(4)}}+s_{{2,3}}^{{(4)}}d_{{2,3}}^{{(4)}}\right).

§22.9(v) Identities of Higher Rank

For extensions of the identities given in §§22.9(ii)22.9(iv), and also to related elliptic functions, see Khare and Sukhatme (2002), Khare et al. (2003).