About the Project

Visit (-- welcom --) pharmacy buy reinforce over counterpart. ident stratege reinforce 100-120-150mg mills price prescription onli

AdvancedHelp

(0.009 seconds)

11—20 of 435 matching pages

11: 28.25 Asymptotic Expansions for Large z
28.25.1 M ν ( 3 , 4 ) ( z , h ) e ± i ( 2 h cosh z ( 1 2 ν + 1 4 ) π ) ( π h ( cosh z + 1 ) ) 1 2 m = 0 D m ± ( 4 i h ( cosh z + 1 ) ) m ,
D 1 ± = 0 ,
D 0 ± = 1 ,
28.25.3 ( m + 1 ) D m + 1 ± + ( ( m + 1 2 ) 2 ± ( m + 1 4 ) 8 i h + 2 h 2 a ) D m ± ± ( m 1 2 ) ( 8 i h m ) D m 1 ± = 0 , m 0 .
12: 4.13 Lambert W -Function
The decreasing solution can be identified as W ± 1 ( x 0 i ) . … W 0 ( z ) is a single-valued analytic function on ( , e 1 ] , real-valued when z > e 1 , and has a square root branch point at z = e 1 . …The other branches W k ( z ) are single-valued analytic functions on ( , 0 ] , have a logarithmic branch point at z = 0 , and, in the case k = ± 1 , have a square root branch point at z = e 1 0 i respectively. … and has several advantages over the Lambert W -function (see Lawrence et al. (2012)), and the tree T -function T ( z ) = W ( z ) , which is a solution of … where t 0 for W 0 , t 0 for W ± 1 on the relevant branch cuts, …
13: 36.7 Zeros
x m , n ± = 2 y m ( 2 n + 1 2 + ( 1 ) m 1 2 ± 1 4 ) π , m = 1 , 2 , 3 , , n = 0 , ± 1 , ± 2 , .
Table 36.7.1: Zeros of cusp diffraction catastrophe to 5D. …
Zeros { x y } inside, and zeros [ x y ] outside, the cusp x 2 = 8 27 | y | 3 .
{ ± 0.52768 4.37804 } [ ± 2.35218 1.74360 ]
{ ± 1.41101 5.55470 } { ± 2.36094 5.52321 } [ ± 4.42707 3.05791 ]
{ ± 0.38488 8.31916 } { ± 2.71193 8.22315 } { ± 3.49286 8.20326 } { ± 5.96669 7.85723 } { ± 6.79538 7.80456 } [ ± 9.17308 5.55831 ]
x n = ± ( 8 27 ) 1 / 2 | y n | 3 / 2 ( 1 + ξ n ) ,
14: 22.9 Cyclic Identities
§22.9 Cyclic Identities
§22.9(ii) Typical Identities of Rank 2
§22.9(iii) Typical Identities of Rank 3
15: 6.4 Analytic Continuation
6.4.4 Ci ( z e ± π i ) = ± π i + Ci ( z ) ,
6.4.5 Chi ( z e ± π i ) = ± π i + Chi ( z ) ,
6.4.6 f ( z e ± π i ) = π e i z f ( z ) ,
6.4.7 g ( z e ± π i ) = π i e i z + g ( z ) .
16: 26.15 Permutations: Matrix Notation
where the sum is over 1 g < k n and n h > 1 . … For ( j , k ) B , B [ j , k ] denotes B after removal of all elements of the form ( j , t ) or ( t , k ) , t = 1 , 2 , , n . B ( j , k ) denotes B with the element ( j , k ) removed.
26.15.5 R ( x , B ) = x R ( x , B [ j , k ] ) + R ( x , B ( j , k ) ) .
26.15.8 N 0 ( B ) N ( 0 , B ) = k = 0 n ( 1 ) k r k ( B ) ( n k ) ! .
17: 14.2 Differential Equations
Standard solutions: 𝖯 ν ( ± x ) , 𝖰 ν ( ± x ) , 𝖰 ν 1 ( ± x ) , P ν ( ± x ) , Q ν ( ± x ) , Q ν 1 ( ± x ) . … Standard solutions: 𝖯 ν μ ( ± x ) , 𝖯 ν μ ( ± x ) , 𝖰 ν μ ( ± x ) , 𝖰 ν 1 μ ( ± x ) , P ν μ ( ± x ) , P ν μ ( ± x ) , 𝑸 ν μ ( ± x ) , 𝑸 ν 1 μ ( ± x ) . …
18: 33.8 Continued Fractions
33.8.2 H ± H ± = c ± i ρ a b 2 ( ρ η ± i ) + ( a + 1 ) ( b + 1 ) 2 ( ρ η ± 2 i ) + ,
a = 1 + ± i η ,
b = ± i η ,
c = ± i ( 1 ( η / ρ ) ) .
F = ± ( q 1 ( u p ) 2 + q ) 1 / 2 ,
19: 28.20 Definitions and Basic Properties
When z is replaced by ± i z , (28.2.1) becomes the modified Mathieu’s equation: … Then from §2.7(ii) it is seen that equation (28.20.2) has independent and unique solutions that are asymptotic to ζ 1 / 2 e ± 2 i h ζ as ζ in the respective sectors | ph ( i ζ ) | 3 2 π δ , δ being an arbitrary small positive constant. …
Mc 2 n ( j ) ( z ± 1 2 π i , h ) = Mc 2 n ( j ) ( z , ± i h ) ,
Ms 2 n + 1 ( j ) ( z ± 1 2 π i , h ) = Mc 2 n + 1 ( j ) ( z , ± i h ) ,
And for the corresponding identities for the radial functions use (28.20.15) and (28.20.16).
20: 4.24 Inverse Trigonometric Functions: Further Properties
4.24.13 Arcsin u ± Arcsin v = Arcsin ( u ( 1 v 2 ) 1 / 2 ± v ( 1 u 2 ) 1 / 2 ) ,
4.24.14 Arccos u ± Arccos v = Arccos ( u v ( ( 1 u 2 ) ( 1 v 2 ) ) 1 / 2 ) ,
4.24.15 Arctan u ± Arctan v = Arctan ( u ± v 1 u v ) ,
4.24.16 Arcsin u ± Arccos v = Arcsin ( u v ± ( ( 1 u 2 ) ( 1 v 2 ) ) 1 / 2 ) = Arccos ( v ( 1 u 2 ) 1 / 2 u ( 1 v 2 ) 1 / 2 ) ,
4.24.17 Arctan u ± Arccot v = Arctan ( u v ± 1 v u ) = Arccot ( v u u v ± 1 ) .