About the Project

Jacobi elliptic form

AdvancedHelp

(0.003 seconds)

11—15 of 15 matching pages

11: Bibliography K
  • A. Khare, A. Lakshminarayan, and U. Sukhatme (2003) Cyclic identities for Jacobi elliptic and related functions. J. Math. Phys. 44 (4), pp. 1822–1841.
  • A. Khare and U. Sukhatme (2002) Cyclic identities involving Jacobi elliptic functions. J. Math. Phys. 43 (7), pp. 3798–3806.
  • A. Khare and U. Sukhatme (2004) Connecting Jacobi elliptic functions with different modulus parameters. Pramana 63 (5), pp. 921–936.
  • S. Kida (1981) A vortex filament moving without change of form. J. Fluid Mech. 112, pp. 397–409.
  • N. Koblitz (1993) Introduction to Elliptic Curves and Modular Forms. 2nd edition, Graduate Texts in Mathematics, Vol. 97, Springer-Verlag, New York.
  • 12: 23.15 Definitions
    The set of all bilinear transformations of this form is denoted by SL ( 2 , ) (Serre (1973, p. 77)). … If, as a function of q , f ( τ ) is analytic at q = 0 , then f ( τ ) is called a modular form. If, in addition, f ( τ ) 0 as q 0 , then f ( τ ) is called a cusp form. …
    Elliptic Modular Function
    13: 29.14 Orthogonality
    29.14.2 g , h = 0 K 0 K w ( s , t ) g ( s , t ) h ( s , t ) d t d s ,
    29.14.3 w ( s , t ) = sn 2 ( K + i t , k ) sn 2 ( s , k ) .
    29.14.4 𝑠𝐸 2 n + 1 m ( s , k 2 ) 𝑠𝐸 2 n + 1 m ( K + i t , k 2 ) ,
    When combined, all eight systems (29.14.1) and (29.14.4)–(29.14.10) form an orthogonal and complete system with respect to the inner product
    29.14.11 g , h = 0 4 K 0 2 K w ( s , t ) g ( s , t ) h ( s , t ) d t d s ,
    14: 22.9 Cyclic Identities
    §22.9 Cyclic Identities
    §22.9(i) Notation
    15: Bibliography L
  • G. Labahn and M. Mutrie (1997) Reduction of Elliptic Integrals to Legendre Normal Form. Technical report Technical Report 97-21, Department of Computer Science, University of Waterloo, Waterloo, Ontario.
  • J. Letessier (1995) Co-recursive associated Jacobi polynomials. J. Comput. Appl. Math. 57 (1-2), pp. 203–213.
  • Y. L. Luke (1968) Approximations for elliptic integrals. Math. Comp. 22 (103), pp. 627–634.
  • Y. L. Luke (1970) Further approximations for elliptic integrals. Math. Comp. 24 (109), pp. 191–198.
  • J. N. Lyness (1971) Adjusted forms of the Fourier coefficient asymptotic expansion and applications in numerical quadrature. Math. Comp. 25 (113), pp. 87–104.