About the Project

Gegenbauer function

AdvancedHelp

(0.002 seconds)

11—20 of 27 matching pages

11: 18.18 Sums
18.18.8 C n ( λ ) ( cos θ 1 cos θ 2 + sin θ 1 sin θ 2 cos ϕ ) = = 0 n 2 2 ( n ) ! 2 λ + 2 1 2 λ 1 ( ( λ ) ) 2 ( 2 λ ) n + ( sin θ 1 ) C n ( λ + ) ( cos θ 1 ) ( sin θ 2 ) C n ( λ + ) ( cos θ 2 ) C ( λ 1 2 ) ( cos ϕ ) , λ > 0 , λ 1 2 .
12: Bibliography C
  • H. S. Cohl (2013b) On a generalization of the generating function for Gegenbauer polynomials. Integral Transforms Spec. Funct. 24 (10), pp. 807–816.
  • 13: 10.44 Sums
    Graf’s and Gegenbauer’s Addition Theorems
    14: 10.23 Sums
    Graf’s and Gegenbauer’s Addition Theorems
    10.23.8 𝒞 ν ( w ) w ν = 2 ν Γ ( ν ) k = 0 ( ν + k ) 𝒞 ν + k ( u ) u ν J ν + k ( v ) v ν C k ( ν ) ( cos α ) , ν 0 , 1 , , | v e ± i α | < | u | ,
    10.23.9 e i v cos α = Γ ( ν ) ( 1 2 v ) ν k = 0 ( ν + k ) i k J ν + k ( v ) C k ( ν ) ( cos α ) , ν 0 , 1 , .
    15: 1.10 Functions of a Complex Variable
    §1.10(vi) Multivalued Functions
    §1.10(vii) Inverse Functions
    §1.10(xi) Generating Functions
    and hence d d x C n ( λ ) ( x ) = 2 λ C n 1 ( λ + 1 ) ( x ) , that is (18.9.19). The recurrence relation for C n ( λ ) ( x ) in §18.9(i) follows from ( 1 2 x z + z 2 ) z F ( x , λ ; z ) = 2 λ ( x z ) F ( x , λ ; z ) , and the contour integral representation for C n ( λ ) ( x ) in §18.10(iii) is just (1.10.27).
    16: 18.35 Pollaczek Polynomials
    18.35.8 P n ( λ ) ( x ; 0 , 0 ) = C n ( λ ) ( x ) ,
    17: 18.3 Definitions
    Table 18.3.1: Orthogonality properties for classical OP’s: intervals, weight functions, standardizations, leading coefficients, and parameter constraints. …
    Name p n ( x ) ( a , b ) w ( x ) h n k n k ~ n / k n Constraints
    18.3.2 x N + 1 , n = cos ( ( n 1 2 ) π / ( N + 1 ) ) .
    Legendre polynomials are special cases of Legendre functions, Ferrers functions, and associated Legendre functions14.7(i)). … For 1 β > α > 1 a finite system of Jacobi polynomials P n ( α , β ) ( x ) is orthogonal on ( 1 , ) with weight function w ( x ) = ( x 1 ) α ( x + 1 ) β . …
    18: 18.5 Explicit Representations
    18.5.10 C n ( λ ) ( x ) = = 0 n / 2 ( 1 ) ( λ ) n ! ( n 2 ) ! ( 2 x ) n 2 = ( 2 x ) n ( λ ) n n ! F 1 2 ( 1 2 n , 1 2 n + 1 2 1 λ n ; 1 x 2 ) ,
    18.5.11 C n ( λ ) ( cos θ ) = = 0 n ( λ ) ( λ ) n ! ( n ) ! cos ( ( n 2 ) θ ) = e i n θ ( λ ) n n ! F 1 2 ( n , λ 1 λ n ; e 2 i θ ) .
    19: 18.7 Interrelations and Limit Relations
    18.7.1 C n ( λ ) ( x ) = ( 2 λ ) n ( λ + 1 2 ) n P n ( λ 1 2 , λ 1 2 ) ( x ) ,
    18.7.2 P n ( α , α ) ( x ) = ( α + 1 ) n ( 2 α + 1 ) n C n ( α + 1 2 ) ( x ) .
    Chebyshev, Ultraspherical, and Jacobi
    18.7.9 P n ( x ) = C n ( 1 2 ) ( x ) = P n ( 0 , 0 ) ( x ) .
    18.7.15 C 2 n ( λ ) ( x ) = ( λ ) n ( 1 2 ) n P n ( λ 1 2 , 1 2 ) ( 2 x 2 1 ) ,
    20: 18.11 Relations to Other Functions
    18.11.1 𝖯 n m ( x ) = ( 1 2 ) m ( 2 ) m ( 1 x 2 ) 1 2 m C n m ( m + 1 2 ) ( x ) = ( n + 1 ) m ( 2 ) m ( 1 x 2 ) 1 2 m P n m ( m , m ) ( x ) , 0 m n .