About the Project

F. H. Jackson q-analog

AdvancedHelp

(0.004 seconds)

1—10 of 353 matching pages

1: 17.7 Special Cases of Higher Ο• s r Functions
β–Ί
q -Analog of Bailey’s F 1 2 ⁑ ( 1 ) Sum
β–Ί
q -Analog of Gauss’s F 1 2 ⁑ ( 1 ) Sum
β–Ί
F. H. Jackson’s Terminating q -Analog of Dixon’s Sum
β–Ί
q -Analog of Dixon’s F 2 3 ⁑ ( 1 ) Sum
β–Ί
F. H. Jackson’s q -Analog of Dougall’s F 6 7 ⁑ ( 1 ) Sum
2: 17.1 Special Notation
β–ΊThe main functions treated in this chapter are the basic hypergeometric (or q -hypergeometric) function Ο• s r ⁑ ( a 1 , a 2 , , a r ; b 1 , b 2 , , b s ; q , z ) , the bilateral basic hypergeometric (or bilateral q -hypergeometric) function ψ s r ⁑ ( a 1 , a 2 , , a r ; b 1 , b 2 , , b s ; q , z ) , and the q -analogs of the Appell functions Ξ¦ ( 1 ) ⁑ ( a ; b , b ; c ; q ; x , y ) , Ξ¦ ( 2 ) ⁑ ( a ; b , b ; c , c ; q ; x , y ) , Ξ¦ ( 3 ) ⁑ ( a , a ; b , b ; c ; q ; x , y ) , and Ξ¦ ( 4 ) ⁑ ( a , b ; c , c ; q ; x , y ) . … β–ΊFine (1988) uses F ⁑ ( a , b ; t : q ) for a particular specialization of a Ο• 1 2 function.
3: Bibliography M
β–Ί
  • A. R. Miller (2003) On a Kummer-type transformation for the generalized hypergeometric function F 2 2 . J. Comput. Appl. Math. 157 (2), pp. 507–509.
  • β–Ί
  • S. C. Milne (1985a) A q -analog of the F 4 5 ⁒ ( 1 ) summation theorem for hypergeometric series well-poised in π‘†π‘ˆ ⁒ ( n ) . Adv. in Math. 57 (1), pp. 14–33.
  • β–Ί
  • S. C. Milne (1985d) A q -analog of hypergeometric series well-poised in π‘†π‘ˆ ⁒ ( n ) and invariant G -functions. Adv. in Math. 58 (1), pp. 1–60.
  • β–Ί
  • S. C. Milne (1988) A q -analog of the Gauss summation theorem for hypergeometric series in U ⁒ ( n ) . Adv. in Math. 72 (1), pp. 59–131.
  • β–Ί
  • S. C. Milne (1994) A q -analog of a Whipple’s transformation for hypergeometric series in U ⁒ ( n ) . Adv. Math. 108 (1), pp. 1–76.
  • 4: Errata
    β–Ί
  • Subsection 17.9(iii)

    The title of the paragraph which was previously “Gasper’s q -Analog of Clausen’s Formula” has been changed to “Gasper’s q -Analog of Clausen’s Formula (16.12.2)”.

  • β–Ί
  • Subsection 17.7(iii)

    The title of the paragraph which was previously “Andrews’ Terminating q -Analog of (17.7.8)” has been changed to “Andrews’ q -Analog of the Terminating Version of Watson’s F 2 3 Sum (16.4.6)”. The title of the paragraph which was previously “Andrews’ Terminating q -Analog” has been changed to “Andrews’ q -Analog of the Terminating Version of Whipple’s F 2 3 Sum (16.4.7)”.

  • β–Ί
  • Additions

    Section: 15.9(v) Complete Elliptic Integrals. Equations: (11.11.9_5), (11.11.13_5), Intermediate equality in (15.4.27) which relates to F ⁑ ( a , a ; a + 1 ; 1 2 ) , (15.4.34), (19.5.4_1), (19.5.4_2) and (19.5.4_3).

  • β–Ί
  • Equation (11.11.1)

    Pochhammer symbol representations for the functions F k ⁒ ( ν ) and G k ⁒ ( ν ) were inserted.

  • β–Ί
  • Equation (35.7.3)

    Originally the matrix in the argument of the Gaussian hypergeometric function of matrix argument F 1 2 was written with round brackets. This matrix has been rewritten with square brackets to be consistent with the rest of the DLMF.

  • 5: 17.9 Further Transformations of Ο• r r + 1 Functions
    β–Ί
    F. H. Jackson’s Transformations
    β–Ί
    Watson’s q -Analog of Whipple’s Theorem
    β–Ί
    Gasper’s q -Analog of Clausen’s Formula (16.12.2)
    6: 33.8 Continued Fractions
    β–ΊIf we denote u = F β„“ / F β„“ and p + i ⁒ q = H β„“ + / H β„“ + , then β–Ί
    F β„“ = ± ( q 1 ⁒ ( u p ) 2 + q ) 1 / 2 ,
    β–Ί
    F β„“ = u ⁒ F β„“ ,
    β–Ί
    G β„“ = q 1 ⁒ ( u p ) ⁒ F β„“ ,
    β–Ί
    G β„“ = q 1 ⁒ ( u ⁒ p p 2 q 2 ) ⁒ F β„“ .
    7: 31.7 Relations to Other Functions
    β–Ί
    31.7.1 F 1 2 ⁑ ( Ξ± , Ξ² ; Ξ³ ; z ) = H ⁒ β„“ ⁑ ( 1 , Ξ± ⁒ Ξ² ; Ξ± , Ξ² , Ξ³ , Ξ΄ ; z ) = H ⁒ β„“ ⁑ ( 0 , 0 ; Ξ± , Ξ² , Ξ³ , Ξ± + Ξ² + 1 Ξ³ ; z ) = H ⁒ β„“ ⁑ ( a , a ⁒ Ξ± ⁒ Ξ² ; Ξ± , Ξ² , Ξ³ , Ξ± + Ξ² + 1 Ξ³ ; z ) .
    β–ΊOther reductions of H ⁒ β„“ to a F 1 2 , with at least one free parameter, exist iff the pair ( a , p ) takes one of a finite number of values, where q = Ξ± ⁒ Ξ² ⁒ p . … β–Ί
    31.7.2 H ⁒ β„“ ⁑ ( 2 , Ξ± ⁒ Ξ² ; Ξ± , Ξ² , Ξ³ , Ξ± + Ξ² 2 ⁒ Ξ³ + 1 ; z ) = F 1 2 ⁑ ( 1 2 ⁒ Ξ± , 1 2 ⁒ Ξ² ; Ξ³ ; 1 ( 1 z ) 2 ) ,
    β–Ί
    31.7.3 H ⁒ β„“ ⁑ ( 4 , Ξ± ⁒ Ξ² ; Ξ± , Ξ² , 1 2 , 2 3 ⁒ ( Ξ± + Ξ² ) ; z ) = F 1 2 ⁑ ( 1 3 ⁒ Ξ± , 1 3 ⁒ Ξ² ; 1 2 ; 1 ( 1 z ) 2 ⁒ ( 1 1 4 ⁒ z ) ) ,
    β–Ί
    31.7.4 H ⁒ β„“ ⁑ ( 1 2 + i ⁒ 3 2 , Ξ± ⁒ Ξ² ⁒ ( 1 2 + i ⁒ 3 6 ) ; Ξ± , Ξ² , 1 3 ⁒ ( Ξ± + Ξ² + 1 ) , 1 3 ⁒ ( Ξ± + Ξ² + 1 ) ; z ) = F 1 2 ⁑ ( 1 3 ⁒ Ξ± , 1 3 ⁒ Ξ² ; 1 3 ⁒ ( Ξ± + Ξ² + 1 ) ; 1 ( 1 ( 3 2 i ⁒ 3 2 ) ⁒ z ) 3 ) .
    8: 10.16 Relations to Other Functions
    β–Ί
    H 1 2 ( 1 ) ⁑ ( z ) = i ⁒ H 1 2 ( 1 ) ⁑ ( z ) = i ⁒ ( 2 Ο€ ⁒ z ) 1 2 ⁒ e i ⁒ z ,
    β–Ί β–ΊFor F 1 0 see (16.2.1). β–ΊWith 𝐅 as in §15.2(i), and with z and Ξ½ fixed, β–Ί
    10.16.10 J Ξ½ ⁑ ( z ) = ( 1 2 ⁒ z ) Ξ½ ⁒ lim 𝐅 ⁑ ( Ξ» , ΞΌ ; Ξ½ + 1 ; z 2 / ( 4 ⁒ Ξ» ⁒ ΞΌ ) ) ,
    9: 24.16 Generalizations
    β–ΊIn no particular order, other generalizations include: Bernoulli numbers and polynomials with arbitrary complex index (Butzer et al. (1992)); Euler numbers and polynomials with arbitrary complex index (Butzer et al. (1994)); q-analogs (Carlitz (1954a), Andrews and Foata (1980)); conjugate Bernoulli and Euler polynomials (Hauss (1997, 1998)); Bernoulli–Hurwitz numbers (Katz (1975)); poly-Bernoulli numbers (Kaneko (1997)); Universal Bernoulli numbers (Clarke (1989)); p -adic integer order Bernoulli numbers (Adelberg (1996)); p -adic q -Bernoulli numbers (Kim and Kim (1999)); periodic Bernoulli numbers (Berndt (1975b)); cotangent numbers (Girstmair (1990b)); Bernoulli–Carlitz numbers (Goss (1978)); Bernoulli–Padé numbers (Dilcher (2002)); Bernoulli numbers belonging to periodic functions (Urbanowicz (1988)); cyclotomic Bernoulli numbers (Girstmair (1990a)); modified Bernoulli numbers (Zagier (1998)); higher-order Bernoulli and Euler polynomials with multiple parameters (Erdélyi et al. (1953a, §§1.13.1, 1.14.1)).
    10: 33.2 Definitions and Basic Properties
    β–Ί
    §33.2(ii) Regular Solution F β„“ ⁑ ( Ξ· , ρ )
    β–ΊThe function F β„“ ⁑ ( Ξ· , ρ ) is recessive (§2.7(iii)) at ρ = 0 , and is defined by … β–Ί
    §33.2(iii) Irregular Solutions G β„“ ⁑ ( Ξ· , ρ ) , H β„“ ± ⁑ ( Ξ· , ρ )
    β–Ί H β„“ + ⁑ ( Ξ· , ρ ) and H β„“ ⁑ ( Ξ· , ρ ) are complex conjugates, and their real and imaginary parts are given by … β–ΊAs in the case of F β„“ ⁑ ( Ξ· , ρ ) , the solutions H β„“ ± ⁑ ( Ξ· , ρ ) and G β„“ ⁑ ( Ξ· , ρ ) are analytic functions of ρ when 0 < ρ < . …