About the Project

Bailey 4F3(1) sum

AdvancedHelp

(0.002 seconds)

11—20 of 844 matching pages

11: Bibliography
  • F. V. Andreev and A. V. Kitaev (2002) Transformations R S 4 2 ( 3 ) of the ranks 4 and algebraic solutions of the sixth Painlevé equation. Comm. Math. Phys. 228 (1), pp. 151–176.
  • G. E. Andrews and A. Berkovich (1998) A trinomial analogue of Bailey’s lemma and N = 2 superconformal invariance. Comm. Math. Phys. 192 (2), pp. 245–260.
  • G. E. Andrews and D. Foata (1980) Congruences for the q -secant numbers. European J. Combin. 1 (4), pp. 283–287.
  • G. E. Andrews (2000) Umbral calculus, Bailey chains, and pentagonal number theorems. J. Combin. Theory Ser. A 91 (1-2), pp. 464–475.
  • G. E. Andrews (2001) Bailey’s Transform, Lemma, Chains and Tree. In Special Functions 2000: Current Perspective and Future Directions (Tempe, AZ), J. Bustoz, M. E. H. Ismail, and S. K. Suslov (Eds.), NATO Sci. Ser. II Math. Phys. Chem., Vol. 30, pp. 1–22.
  • 12: 4.48 Software
  • Bailey (1993). Fortran.

  • See also Bailey (1995), Hull and Abrham (1986), Xu and Li (1994). …
    13: 17.4 Basic Hypergeometric Functions
    It is slightly at variance with the notation in Bailey (1964) and Slater (1966). In these references the factor ( ( 1 ) n q ( n 2 ) ) s r is not included in the sum. … Here and elsewhere the b j must not take any of the values q n , and the a j must not take any of the values q n + 1 . The infinite series converge when s r provided that | ( b 1 b s ) / ( a 1 a r z ) | < 1 and also, in the case s = r , | z | < 1 . … The following definitions apply when | x | < 1 and | y | < 1 : …
    14: 17.9 Further Transformations of ϕ r r + 1 Functions
    §17.9 Further Transformations of ϕ r r + 1 Functions
    Sears’ Balanced ϕ 3 4 Transformations
    With d e f = a b c q 1 n
    Bailey’s Transformation of Very-Well-Poised ϕ 7 8
    §17.9(iv) Bibasic Series
    15: Bibliography W
  • S. O. Warnaar (1998) A note on the trinomial analogue of Bailey’s lemma. J. Combin. Theory Ser. A 81 (1), pp. 114–118.
  • D. V. Widder (1979) The Airy transform. Amer. Math. Monthly 86 (4), pp. 271–277.
  • J. A. Wilson (1991) Asymptotics for the F 3 4 polynomials. J. Approx. Theory 66 (1), pp. 58–71.
  • E. Witten (1987) Elliptic genera and quantum field theory. Comm. Math. Phys. 109 (4), pp. 525–536.
  • M. E. Wojcicki (1961) Algorithm 44: Bessel functions computed recursively. Comm. ACM 4 (4), pp. 177–178.
  • 16: 5.24 Software
  • Bailey (1993). Fortran and C++ wrapper.

  • 17: Bibliography M
  • D. A. MacDonald (1997) On the computation of zeroes of J n ( z ) i J n + 1 ( z ) = 0 . Quart. Appl. Math. 55 (4), pp. 623–633.
  • D. R. Masson (1991) Associated Wilson polynomials. Constr. Approx. 7 (4), pp. 521–534.
  • G. J. Miel (1981) Evaluation of complex logarithms and related functions. SIAM J. Numer. Anal. 18 (4), pp. 744–750.
  • S. C. Milne (1985a) A q -analog of the F 4 5 ( 1 ) summation theorem for hypergeometric series well-poised in 𝑆𝑈 ( n ) . Adv. in Math. 57 (1), pp. 14–33.
  • S. C. Milne and G. M. Lilly (1992) The A l and C l Bailey transform and lemma. Bull. Amer. Math. Soc. (N.S.) 26 (2), pp. 258–263.
  • 18: Bibliography S
  • F. W. Schäfke and H. Groh (1962) Zur Berechnung der Eigenwerte der Sphäroiddifferentialgleichung. Numer. Math. 4, pp. 310–312 (German).
  • D. Schmidt and G. Wolf (1979) A method of generating integral relations by the simultaneous separability of generalized Schrödinger equations. SIAM J. Math. Anal. 10 (4), pp. 823–838.
  • B. D. Sleeman (1968b) On parabolic cylinder functions. J. Inst. Math. Appl. 4 (1), pp. 106–112.
  • D. Sornette (1998) Multiplicative processes and power laws. Phys. Rev. E 57 (4), pp. 4811–4813.
  • V. P. Spiridonov (2002) An elliptic incarnation of the Bailey chain. Int. Math. Res. Not. 2002 (37), pp. 1945–1977.
  • 19: 17.6 ϕ 1 2 Function
    q -Gauss Sum
    First q -Chu–Vandermonde Sum
    Second q -Chu–Vandermonde Sum
    Andrews–Askey Sum
    Bailey–Daum q -Kummer Sum
    20: 18.18 Sums
    §18.18(vi) Bateman-Type Sums
    Jacobi
    For the Poisson kernel of Jacobi polynomials (the Bailey formula) see Bailey (1938).
    §18.18(viii) Other Sums