About the Project

.2022世界杯中国男足蠃_『wn4.com_』世界杯冠军加多少分_w2n3c1o_2022年12月10日16时49分8秒_zwuzf2w8s

AdvancedHelp

(0.006 seconds)

11—20 of 815 matching pages

11: 25.20 Approximations
  • Piessens and Branders (1972) gives the coefficients of the Chebyshev-series expansions of s ζ ( s + 1 ) and ζ ( s + k ) , k = 2 , 3 , 4 , 5 , 8 , for 0 s 1 (23D).

  • Morris (1979) gives rational approximations for Li 2 ( x ) 25.12(i)) for 0.5 x 1 . Precision is varied with a maximum of 24S.

  • Antia (1993) gives minimax rational approximations for Γ ( s + 1 ) F s ( x ) , where F s ( x ) is the Fermi–Dirac integral (25.12.14), for the intervals < x 2 and 2 x < , with s = 1 2 , 1 2 , 3 2 , 5 2 . For each s there are three sets of approximations, with relative maximum errors 10 4 , 10 8 , 10 12 .

  • 12: 24.2 Definitions and Generating Functions
    B 2 n + 1 = 0 ,
    24.2.4 B n = B n ( 0 ) ,
    Table 24.2.4: Euler numbers E n .
    n E n
    Table 24.2.5: Coefficients b n , k of the Bernoulli polynomials B n ( x ) = k = 0 n b n , k x k .
    k
    Table 24.2.6: Coefficients e n , k of the Euler polynomials E n ( x ) = k = 0 n e n , k x k .
    k
    13: 3.6 Linear Difference Equations
    Given numerical values of w 0 and w 1 , the solution w n of the equation … beginning with e 0 = w 0 . … We apply the algorithm to compute 𝐄 n ( 1 ) to 8S for the range n = 1 , 2 , , 10 , beginning with the value 𝐄 0 ( 1 ) = 0.56865  663 obtained from the Maclaurin series expansion (§11.10(iii)). … The values of w n for n = 1 , 2 , , 10 are the wanted values of 𝐄 n ( 1 ) . (It should be observed that for n > 10 , however, the w n are progressively poorer approximations to 𝐄 n ( 1 ) : the underlined digits are in error.) …
    14: 18.8 Differential Equations
    Table 18.8.1: Classical OP’s: differential equations A ( x ) f ′′ ( x ) + B ( x ) f ( x ) + C ( x ) f ( x ) + λ n f ( x ) = 0 .
    # f ( x ) A ( x ) B ( x ) C ( x ) λ n
    8 L n ( α ) ( x ) x α + 1 x 0 n
    10 e 1 2 x x 1 2 α L n ( α ) ( x ) x 1 1 4 x 1 4 α 2 x 1 n + 1 2 ( α + 1 )
    12 H n ( x ) 1 2 x 0 2 n
    14 𝐻𝑒 n ( x ) 1 x 0 n
    15: 11.14 Tables
  • Abramowitz and Stegun (1964, Chapter 12) tabulates 𝐇 n ( x ) , 𝐇 n ( x ) Y n ( x ) , and I n ( x ) 𝐋 n ( x ) for n = 0 , 1 and x = 0 ( .1 ) 5 , x 1 = 0 ( .01 ) 0.2 to 6D or 7D.

  • Barrett (1964) tabulates 𝐋 n ( x ) for n = 0 , 1 and x = 0.2 ( .005 ) 4 ( .05 ) 10 ( .1 ) 19.2 to 5 or 6S, x = 6 ( .25 ) 59.5 ( .5 ) 100 to 2S.

  • Abramowitz and Stegun (1964, Chapter 12) tabulates 0 x ( I 0 ( t ) 𝐋 0 ( t ) ) d t and ( 2 / π ) x t 1 𝐇 0 ( t ) d t for x = 0 ( .1 ) 5 to 5D or 7D; 0 x ( 𝐇 0 ( t ) Y 0 ( t ) ) d t ( 2 / π ) ln x , 0 x ( I 0 ( t ) 𝐋 0 ( t ) ) d t ( 2 / π ) ln x , and x t 1 ( 𝐇 0 ( t ) Y 0 ( t ) ) d t for x 1 = 0 ( .01 ) 0.2 to 6D.

  • Bernard and Ishimaru (1962) tabulates 𝐉 ν ( x ) and 𝐄 ν ( x ) for ν = 10 ( .1 ) 10 and x = 0 ( .1 ) 10 to 5D.

  • Agrest and Maksimov (1971, Chapter 11) defines incomplete Struve, Anger, and Weber functions and includes tables of an incomplete Struve function 𝐇 n ( x , α ) for n = 0 , 1 , x = 0 ( .2 ) 10 , and α = 0 ( .2 ) 1.4 , 1 2 π , together with surface plots.

  • 16: 26.9 Integer Partitions: Restricted Number and Part Size
    p k ( n ) denotes the number of partitions of n into at most k parts. See Table 26.9.1. … It follows that p k ( n ) also equals the number of partitions of n into parts that are less than or equal to k . p k ( m , n ) is the number of partitions of n into at most k parts, each less than or equal to m . …
    17: 8.26 Tables
  • Zhang and Jin (1996, Table 3.9) tabulates I x ( a , b ) for x = 0 ( .05 ) 1 , a = 0.5 , 1 , 3 , 5 , 10 , b = 1 , 10 to 8D.

  • Abramowitz and Stegun (1964, pp. 245–248) tabulates E n ( x ) for n = 2 , 3 , 4 , 10 , 20 , x = 0 ( .01 ) 2 to 7D; also ( x + n ) e x E n ( x ) for n = 2 , 3 , 4 , 10 , 20 , x 1 = 0 ( .01 ) 0.1 ( .05 ) 0.5 to 6S.

  • Pagurova (1961) tabulates E n ( x ) for n = 0 ( 1 ) 20 , x = 0 ( .01 ) 2 ( .1 ) 10 to 4-9S; e x E n ( x ) for n = 2 ( 1 ) 10 , x = 10 ( .1 ) 20 to 7D; e x E p ( x ) for p = 0 ( .1 ) 1 , x = 0.01 ( .01 ) 7 ( .05 ) 12 ( .1 ) 20 to 7S or 7D.

  • Stankiewicz (1968) tabulates E n ( x ) for n = 1 ( 1 ) 10 , x = 0.01 ( .01 ) 5 to 7D.

  • Zhang and Jin (1996, Table 19.1) tabulates E n ( x ) for n = 1 , 2 , 3 , 5 , 10 , 15 , 20 , x = 0 ( .1 ) 1 , 1.5 , 2 , 3 , 5 , 10 , 20 , 30 , 50 , 100 to 7D or 8S.

  • 18: 3.9 Acceleration of Convergence
    A transformation of a convergent sequence { s n } with limit σ into a sequence { t n } is called limit-preserving if { t n } converges to the same limit σ . … Then the transformation of the sequence { s n } into a sequence { t n , 2 k } is given by … Then t n , 2 k = ε 2 k ( n ) . … with s = 1 12 π 2 = 0.82246 70334 24 . … We give a special form of Levin’s transformation in which the sequence s = { s n } of partial sums s n = j = 0 n a j is transformed into: …
    19: 16.12 Products
    16.12.3 ( F 1 2 ( a , b c ; z ) ) 2 = k = 0 ( 2 a ) k ( 2 b ) k ( c 1 2 ) k ( c ) k ( 2 c 1 ) k k ! F 3 4 ( 1 2 k , 1 2 ( 1 k ) , a + b c + 1 2 , 1 2 a + 1 2 , b + 1 2 , 3 2 k c ; 1 ) z k , | z | < 1 .
    20: 26.10 Integer Partitions: Other Restrictions
    p m ( 𝒟 , n ) denotes the number of partitions of n into at most m distinct parts. …The set { n 1 | n ± j ( mod k ) } is denoted by A j , k . … It is known that for k > 3 , p ( 𝒟 k , n ) p ( A 1 , k + 3 , n ) , with strict inequality for n sufficiently large, provided that k = 2 m 1 , m = 3 , 4 , 5 , or k 32 ; see Yee (2004). … where I 1 ( x ) is the modified Bessel function (§10.25(ii)), and …The quantity A k ( n ) is real-valued. …