5.3 Graphics5.5 Functional Relations

§5.4 Special Values and Extrema

Contents

§5.4(i) Gamma Function

5.4.1
\mathop{\Gamma\/}\nolimits\!\left(1\right)=1,
n!=\mathop{\Gamma\/}\nolimits\!\left(n+1\right).
5.4.2n!!=\begin{cases}2^{{\frac{1}{2}n}}\mathop{\Gamma\/}\nolimits\!\left(\frac{1}{2}n+1\right),&n\text{ even},\\
\pi^{{-\frac{1}{2}}}2^{{\frac{1}{2}n+\frac{1}{2}}}\mathop{\Gamma\/}\nolimits\!\left(\frac{1}{2}n+1\right),&n\text{ odd}.\end{cases}

(The second line of Formula (5.4.2) also applies when n=-1.)

5.4.3|\mathop{\Gamma\/}\nolimits\!\left(iy\right)|=\left(\frac{\pi}{y\mathop{\sinh\/}\nolimits\!\left(\pi y\right)}\right)^{{1/2}},
5.4.4\mathop{\Gamma\/}\nolimits\!\left(\tfrac{1}{2}+iy\right)\mathop{\Gamma\/}\nolimits\!\left(\tfrac{1}{2}-iy\right)=\left|\mathop{\Gamma\/}\nolimits\!\left(\tfrac{1}{2}+iy\right)\right|^{2}=\frac{\pi}{\mathop{\cosh\/}\nolimits\!\left(\pi y\right)},
5.4.5\mathop{\Gamma\/}\nolimits\!\left(\tfrac{1}{4}+iy\right)\mathop{\Gamma\/}\nolimits\!\left(\tfrac{3}{4}-iy\right)=\frac{\pi\sqrt{2}}{\mathop{\cosh\/}\nolimits\!\left(\pi y\right)+i\mathop{\sinh\/}\nolimits\!\left(\pi y\right)}.
5.4.6\mathop{\Gamma\/}\nolimits\!\left(\tfrac{1}{2}\right)=\pi^{{1/2}}\\
=1.77245\; 38509\; 0 5516\; 0 2729\;\dots,
5.4.7\mathop{\Gamma\/}\nolimits\!\left(\tfrac{1}{3}\right)=2.67893\; 85347\; 0 7747\; 63365\;\dots,
5.4.8\mathop{\Gamma\/}\nolimits\!\left(\tfrac{2}{3}\right)=1.35411\; 79394\; 26400\; 41694\;\dots,
5.4.9\mathop{\Gamma\/}\nolimits\!\left(\tfrac{1}{4}\right)=3.62560\; 99082\; 21908\; 31193\;\dots,
5.4.10\mathop{\Gamma\/}\nolimits\!\left(\tfrac{3}{4}\right)=1.22541\; 67024\; 65177\; 64512\;\dots.
5.4.11{\mathop{\Gamma\/}\nolimits^{{\prime}}}\!\left(1\right)=-\EulerConstant.

§5.4(ii) Psi Function

5.4.12
\mathop{\psi\/}\nolimits\!\left(1\right)=-\EulerConstant,
{\mathop{\psi\/}\nolimits^{{\prime}}}\!\left(1\right)=\tfrac{1}{6}\pi^{2},
5.4.13
\mathop{\psi\/}\nolimits\!\left(\tfrac{1}{2}\right)=-\EulerConstant-2\mathop{\ln\/}\nolimits 2,
{\mathop{\psi\/}\nolimits^{{\prime}}}\!\left(\tfrac{1}{2}\right)=\tfrac{1}{2}\pi^{2}.

For higher derivatives of \mathop{\psi\/}\nolimits\!\left(z\right) at z=1 and z=\frac{1}{2}, see §5.15.

5.4.14\mathop{\psi\/}\nolimits\!\left(n+1\right)=\sum _{{k=1}}^{n}\frac{1}{k}-\EulerConstant,
5.4.15\mathop{\psi\/}\nolimits\!\left(n+\tfrac{1}{2}\right)=-\EulerConstant-2\mathop{\ln\/}\nolimits 2+2\left(1+\tfrac{1}{3}+\dots+\tfrac{1}{2n-1}\right),n=1,2,\dots.
5.4.16\imagpart{\mathop{\psi\/}\nolimits\!\left(iy\right)}=\frac{1}{2y}+\frac{\pi}{2}\mathop{\coth\/}\nolimits\!\left(\pi y\right),
5.4.17\imagpart{\mathop{\psi\/}\nolimits\!\left(\tfrac{1}{2}+iy\right)}=\frac{\pi}{2}\mathop{\tanh\/}\nolimits\!\left(\pi y\right),
5.4.18\imagpart{\mathop{\psi\/}\nolimits\!\left(1+iy\right)}=-\frac{1}{2y}+\frac{\pi}{2}\mathop{\coth\/}\nolimits\!\left(\pi y\right).

If p,q are integers with 0<p<q, then

5.4.19\mathop{\psi\/}\nolimits\!\left(\frac{p}{q}\right)=-\EulerConstant-\mathop{\ln\/}\nolimits q-\frac{\pi}{2}\mathop{\cot\/}\nolimits\!\left(\frac{\pi p}{q}\right)+\frac{1}{2}\sum _{{k=1}}^{{q-1}}\mathop{\cos\/}\nolimits\!\left(\frac{2\pi kp}{q}\right)\mathop{\ln\/}\nolimits\!\left(2-2\mathop{\cos\/}\nolimits\!\left(\frac{2\pi k}{q}\right)\right).

§5.4(iii) Extrema

Table 5.4.1: {\mathop{\Gamma\/}\nolimits^{{\prime}}}\!\left(x_{n}\right)=\mathop{\psi\/}\nolimits\!\left(x_{n}\right)=0.
n x_{n} \mathop{\Gamma\/}\nolimits\!\left(x_{n}\right)
0 1.46163 21449 0.88560 31944
1 −0.50408 30083 −3.54464 36112
2 −1.57349 84732 2.30240 72583
3 −2.61072 08875 −0.88813 63584
4 −3.63529 33665 0.24512 75398
5 −4.65323 77626 −0.05277 96396
6 −5.66716 24513 0.00932 45945
7 −6.67841 82649 −0.00139 73966
8 −7.68778 83250 0.00018 18784
9 −8.69576 41633 −0.00002 09253
10 −9.70267 25406 0.00000 21574

Compare Figure 5.3.1.

As n\to\infty,

5.4.20x_{n}=-n+\frac{1}{\pi}\mathop{\mathrm{arctan}\/}\nolimits\!\left(\frac{\pi}{\mathop{\ln\/}\nolimits n}\right)+\mathop{O\/}\nolimits\!\left(\frac{1}{n(\mathop{\ln\/}\nolimits n)^{2}}\right).

For error bounds for this estimate see Walker (2007, Theorem 5).