20.2 Definitions and Periodic Properties20.4 Values at z = 0

§20.3 Graphics

Contents

§20.3(i) \theta-Functions: Real Variable and Real Nome

See accompanying text
Figure 20.3.1: \mathop{\theta _{{j}}\/}\nolimits\!\left(\pi x,0.15\right), 0\leq x\leq 2, j=1,2,3,4. Magnify
See accompanying text
Figure 20.3.2: \mathop{\theta _{{1}}\/}\nolimits\!\left(\pi x,q\right), 0\leq x\leq 2, q = 0.05, 0.5, 0.7, 0.9. For q\leq q^{{\text{Dedekind}}}, \mathop{\theta _{{1}}\/}\nolimits\!\left(\pi x,q\right) is convex in x for 0<x<1. Here q^{{\text{Dedekind}}}=e^{{-\pi y_{0}}}=0.19 approximately, where y=y_{0} corresponds to the maximum value of Dedekind’s eta function \mathop{\eta\/}\nolimits\!\left(iy\right) as depicted in Figure 23.16.1. Magnify
See accompanying text
Figure 20.3.3: \mathop{\theta _{{2}}\/}\nolimits\!\left(\pi x,q\right), 0\leq x\leq 2, q = 0.05, 0.5, 0.7, 0.9. Magnify
See accompanying text
Figure 20.3.4: \mathop{\theta _{{3}}\/}\nolimits\!\left(\pi x,q\right), 0\leq x\leq 2, q = 0.05, 0.5, 0.7, 0.9. Magnify
See accompanying text
Figure 20.3.5: \mathop{\theta _{{4}}\/}\nolimits\!\left(\pi x,q\right), 0\leq x\leq 2, q = 0.05, 0.5, 0.7, 0.9. Magnify
See accompanying text
Figure 20.3.6: \mathop{\theta _{{1}}\/}\nolimits\!\left(x,q\right), 0\leq q\leq 1, x = 0, 0.4, 5, 10, 40. Magnify
See accompanying text
Figure 20.3.7: \mathop{\theta _{{2}}\/}\nolimits\!\left(x,q\right), 0\leq q\leq 1, x = 0, 0.4, 5, 10, 40. Magnify
See accompanying text
Figure 20.3.8: \mathop{\theta _{{3}}\/}\nolimits\!\left(x,q\right), 0\leq q\leq 1, x = 0, 0.4, 5, 10, 40. Magnify
See accompanying text
Figure 20.3.9: \mathop{\theta _{{4}}\/}\nolimits\!\left(x,q\right), 0\leq q\leq 1, x = 0, 0.4, 5, 10, 40. Magnify
Figure 20.3.10: \mathop{\theta _{{1}}\/}\nolimits\!\left(\pi x,q\right), 0\leq x\leq 2, 0\leq q\leq 0.99. Magnify
Figure 20.3.11: \mathop{\theta _{{2}}\/}\nolimits\!\left(\pi x,q\right), 0\leq x\leq 2, 0\leq q\leq 0.99. Magnify
Figure 20.3.12: \mathop{\theta _{{3}}\/}\nolimits\!\left(\pi x,q\right), 0\leq x\leq 2, 0\leq q\leq 0.99. Magnify
Figure 20.3.13: \mathop{\theta _{{4}}\/}\nolimits\!\left(\pi x,q\right), 0\leq x\leq 2, 0\leq q\leq 0.99. Magnify

§20.3(ii) \theta-Functions: Complex Variable and Real Nome

In the graphics shown in this subsection, height corresponds to the absolute value of the function and color to the phase. See also About Color Map.

Figure 20.3.14: \mathop{\theta _{{1}}\/}\nolimits\!\left(\pi x+iy,0.12\right), -1\leq x\leq 1, -1\leq y\leq 2.3. Magnify
Figure 20.3.15: \mathop{\theta _{{2}}\/}\nolimits\!\left(\pi x+iy,0.12\right), -1\leq x\leq 1, -1\leq y\leq 2.3. Magnify
Figure 20.3.16: \mathop{\theta _{{3}}\/}\nolimits\!\left(\pi x+iy,0.12\right), -1\leq x\leq 1, -1\leq y\leq 1.5. Magnify
Figure 20.3.17: \mathop{\theta _{{4}}\/}\nolimits\!\left(\pi x+iy,0.12\right), -1\leq x\leq 1, -1\leq y\leq 1.5. Magnify

§20.3(iii) \theta-Functions: Real Variable and Complex Lattice Parameter

In the graphics shown in this subsection, height corresponds to the absolute value of the function and color to the phase. See also About Color Map.

Figure 20.3.18: \mathop{\theta _{{1}}\/}\nolimits\!\left(0.1\middle|u+iv\right), -1\leq u\leq 1, 0.005\leq v\leq 0.5. The value 0.1 of z is chosen arbitrarily since \mathop{\theta _{{1}}\/}\nolimits vanishes identically when z=0. Magnify
Figure 20.3.19: \mathop{\theta _{{2}}\/}\nolimits\!\left(0\middle|u+iv\right), -1\leq u\leq 1, 0.005\leq v\leq 0.1. Magnify
Figure 20.3.20: \mathop{\theta _{{3}}\/}\nolimits\!\left(0\middle|u+iv\right), -1\leq u\leq 1, 0.005\leq v\leq 0.1. Magnify
Figure 20.3.21: \mathop{\theta _{{4}}\/}\nolimits\!\left(0\middle|u+iv\right), -1\leq u\leq 1, 0.005\leq v\leq 0.1. Magnify
Choose format for 3D interactive visualization
Format
 
Please see Visualization Help for details, and Customize to change your choice, or for other customizations.