20.5 Infinite Products and Related Results20.7 Identities

§20.6 Power Series

Assume

20.6.1\left|\pi z\right|<\min\left|z_{{m,n}}\right|,

where z_{{m,n}} is given by (20.2.5) and the minimum is for m,n\in\Integer, except m=n=0. Then

Here the coefficients are given by

20.6.6\delta _{{2j}}(\tau)=\left.\sum _{{n=-\infty}}^{{\infty}}\sum _{{\substack{m=-\infty\\
\left|m\right|+\left|n\right|\neq 0}}}^{{\infty}}\right.(m+n\tau)^{{-2j}},
20.6.7\alpha _{{2j}}(\tau)=\sum _{{n=-\infty}}^{{\infty}}\sum _{{m=-\infty}}^{{\infty}}(m-\tfrac{1}{2}+n\tau)^{{-2j}},
20.6.8\beta _{{2j}}(\tau)=\sum _{{n=-\infty}}^{{\infty}}\sum _{{m=-\infty}}^{{\infty}}(m-\tfrac{1}{2}+(n-\tfrac{1}{2})\tau)^{{-2j}},
20.6.9\gamma _{{2j}}(\tau)=\sum _{{n=-\infty}}^{{\infty}}\sum _{{m=-\infty}}^{{\infty}}(m+(n-\tfrac{1}{2})\tau)^{{-2j}},

and satisfy

20.6.10
\alpha _{{2j}}(\tau)=2^{{2j}}\delta _{{2j}}(2\tau)-\delta _{{2j}}(\tau),
\beta _{{2j}}(\tau)=2^{{2j}}\gamma _{{2j}}(2\tau)-\gamma _{{2j}}(\tau).

In the double series the order of summation is important only when j=1. For further information on \delta _{{2j}} see §23.9: since the double sums in (20.6.6) and (23.9.1) are the same, we have \delta _{{2n}}=c_{n}/(2n-1) when n\geq 2.