21.2 Definitions21.4 Graphics

§21.3 Symmetry and Quasi-Periodicity

Contents

§21.3(i) Riemann Theta Functions

21.3.1\mathop{\theta\/}\nolimits\!\left(-\mathbf{z}\middle|\boldsymbol{{\Omega}}\right)=\mathop{\theta\/}\nolimits\!\left(\mathbf{z}\middle|\boldsymbol{{\Omega}}\right),
21.3.2\mathop{\theta\/}\nolimits\!\left(\mathbf{z}+\mathbf{m}_{1}\middle|\boldsymbol{{\Omega}}\right)=\mathop{\theta\/}\nolimits\!\left(\mathbf{z}\middle|\boldsymbol{{\Omega}}\right),

when \mathbf{m}_{1}\in\Integer^{g}. Thus \mathop{\theta\/}\nolimits\!\left(\mathbf{z}\middle|\boldsymbol{{\Omega}}\right) is periodic, with period 1, in each element of \mathbf{z}. More generally,

21.3.3\mathop{\theta\/}\nolimits\!\left(\mathbf{z}+\mathbf{m}_{1}+\boldsymbol{{\Omega}}\mathbf{m}_{2}\middle|\boldsymbol{{\Omega}}\right)=e^{{-2\pi i\left(\frac{1}{2}\mathbf{m}_{2}\cdot\boldsymbol{{\Omega}}\cdot\mathbf{m}_{2}+\mathbf{m}_{2}\cdot\mathbf{z}\right)}}\mathop{\theta\/}\nolimits\!\left(\mathbf{z}\middle|\boldsymbol{{\Omega}}\right),

with \mathbf{m}_{1}, \mathbf{m}_{2} \in\Integer^{g}. This is the quasi-periodicity property of the Riemann theta function. It determines the Riemann theta function up to a constant factor. The set of points \mathbf{m}_{1}+\boldsymbol{{\Omega}}\mathbf{m}_{2} form a g-dimensional lattice, the period lattice of the Riemann theta function.

§21.3(ii) Riemann Theta Functions with Characteristics

Again, with \mathbf{m}_{1}, \mathbf{m}_{2} \in\Integer^{g}

21.3.4\mathop{\theta\!\genfrac{[}{]}{0.0pt}{}{\boldsymbol{{\alpha}}+\mathbf{m}_{1}}{\boldsymbol{{\beta}}+\mathbf{m}_{2}}\/}\nolimits\!\left(\mathbf{z}\middle|\boldsymbol{{\Omega}}\right)=e^{{2\pi i\boldsymbol{{\alpha}}\cdot\mathbf{m}_{2}}}\mathop{\theta\!\genfrac{[}{]}{0.0pt}{}{\boldsymbol{{\alpha}}}{\boldsymbol{{\beta}}}\/}\nolimits\!\left(\mathbf{z}\middle|\boldsymbol{{\Omega}}\right).

Because of this property, the elements of \boldsymbol{{\alpha}} and \boldsymbol{{\beta}} are usually restricted to [0,1), without loss of generality.

21.3.5\mathop{\theta\!\genfrac{[}{]}{0.0pt}{}{\boldsymbol{{\alpha}}}{\boldsymbol{{\beta}}}\/}\nolimits\!\left(\mathbf{z}+\mathbf{m}_{1}+\boldsymbol{{\Omega}}\mathbf{m}_{2}\middle|\boldsymbol{{\Omega}}\right)=e^{{2\pi i\left(\boldsymbol{{\alpha}}\cdot\mathbf{m}_{1}-\boldsymbol{{\beta}}\cdot\mathbf{m}_{2}-\frac{1}{2}\mathbf{m}_{2}\cdot\boldsymbol{{\Omega}}\cdot\mathbf{m}_{2}-\mathbf{m}_{2}\cdot\mathbf{z}\right)}}\mathop{\theta\!\genfrac{[}{]}{0.0pt}{}{\boldsymbol{{\alpha}}}{\boldsymbol{{\beta}}}\/}\nolimits\!\left(\mathbf{z}\middle|\boldsymbol{{\Omega}}\right).

For Riemann theta functions with half-period characteristics,

21.3.6\mathop{\theta\!\genfrac{[}{]}{0.0pt}{}{\boldsymbol{{\alpha}}}{\boldsymbol{{\beta}}}\/}\nolimits\!\left(-\mathbf{z}\middle|\boldsymbol{{\Omega}}\right)=(-1)^{{4\boldsymbol{{\alpha}}\cdot\boldsymbol{{\beta}}}}\mathop{\theta\!\genfrac{[}{]}{0.0pt}{}{\boldsymbol{{\alpha}}}{\boldsymbol{{\beta}}}\/}\nolimits\!\left(\mathbf{z}\middle|\boldsymbol{{\Omega}}\right).

See also §20.2(iii) for the case g=1 and classical theta functions.