About the Project

Dixon 3F2(1) sum

AdvancedHelp

(0.006 seconds)

1—10 of 850 matching pages

1: 34.2 Definition: 3 j Symbol
§34.2 Definition: 3 j Symbol
The quantities j 1 , j 2 , j 3 in the 3 j symbol are called angular momenta. …where r , s , t is any permutation of 1 , 2 , 3 . The corresponding projective quantum numbers m 1 , m 2 , m 3 are given by … When both conditions are satisfied the 3 j symbol can be expressed as the finite sum
2: 17.7 Special Cases of Higher ϕ s r Functions
F. H. Jackson’s Terminating q -Analog of Dixon’s Sum
q -Analog of Dixon’s F 2 3 ( 1 ) Sum
Gasper–Rahman q -Analog of Watson’s F 2 3 Sum
First q -Analog of Bailey’s F 3 4 ( 1 ) Sum
Second q -Analog of Bailey’s F 3 4 ( 1 ) Sum
3: Peter A. Clarkson
 Dixon and J. …
4: 16.4 Argument Unity
Lerch Sum
Dixon’s Well-Poised Sum
The function F 2 3 ( a , b , c ; d , e ; 1 ) is analytic in the parameters a , b , c , d , e when its series expansion converges and the bottom parameters are not negative integers or zero. … Balanced F 3 4 ( 1 ) series have transformation formulas and three-term relations. … Transformations for both balanced F 3 4 ( 1 ) and very well-poised F 6 7 ( 1 ) are included in Bailey (1964, pp. 56–63). …
5: Bibliography D
  • A. Debosscher (1998) Unification of one-dimensional Fokker-Planck equations beyond hypergeometrics: Factorizer solution method and eigenvalue schemes. Phys. Rev. E (3) 57 (1), pp. 252–275.
  • B. Deconinck and H. Segur (2000) Pole dynamics for elliptic solutions of the Korteweg-de Vries equation. Math. Phys. Anal. Geom. 3 (1), pp. 49–74.
  • A. M. Din (1981) A simple sum formula for Clebsch-Gordan coefficients. Lett. Math. Phys. 5 (3), pp. 207–211.
  • A. L. Dixon and W. L. Ferrar (1930) Infinite integrals in the theory of Bessel functions. Quart. J. Math., Oxford Ser. 1 (1), pp. 122–145.
  • J. M. Dixon, J. A. Tuszyński, and P. A. Clarkson (1997) From Nonlinearity to Coherence: Universal Features of Nonlinear Behaviour in Many-Body Physics. Oxford University Press, Oxford.
  • 6: 10.32 Integral Representations
    10.32.2 I ν ( z ) = ( 1 2 z ) ν π 1 2 Γ ( ν + 1 2 ) 0 π e ± z cos θ ( sin θ ) 2 ν d θ = ( 1 2 z ) ν π 1 2 Γ ( ν + 1 2 ) 1 1 ( 1 t 2 ) ν 1 2 e ± z t d t , ν > 1 2 .
    10.32.8 K ν ( z ) = π 1 2 ( 1 2 z ) ν Γ ( ν + 1 2 ) 0 e z cosh t ( sinh t ) 2 ν d t = π 1 2 ( 1 2 z ) ν Γ ( ν + 1 2 ) 1 e z t ( t 2 1 ) ν 1 2 d t , ν > 1 2 , | ph z | < 1 2 π .
    10.32.14 K ν ( z ) = 1 2 π 2 i ( π 2 z ) 1 2 e z cos ( ν π ) i i Γ ( t ) Γ ( 1 2 t ν ) Γ ( 1 2 t + ν ) ( 2 z ) t d t , ν 1 2 , | ph z | < 3 2 π .
    In (10.32.14) the integration contour separates the poles of Γ ( t ) from the poles of Γ ( 1 2 t ν ) Γ ( 1 2 t + ν ) . …
    10.32.19 K μ ( z ) K ν ( z ) = 1 8 π i c i c + i Γ ( t + 1 2 μ + 1 2 ν ) Γ ( t + 1 2 μ 1 2 ν ) Γ ( t 1 2 μ + 1 2 ν ) Γ ( t 1 2 μ 1 2 ν ) Γ ( 2 t ) ( 1 2 z ) 2 t d t , c > 1 2 ( | μ | + | ν | ) , | ph z | < 1 2 π .
    7: 34.5 Basic Properties: 6 j Symbol
    Examples are provided by: …
    §34.5(vi) Sums
    Equations (34.5.15) and (34.5.16) are the sum rules. They constitute addition theorems for the 6 j symbol. … For other sums see Ginocchio (1991).
    8: 34.3 Basic Properties: 3 j Symbol
    When any one of j 1 , j 2 , j 3 is equal to 0 , 1 2 , or 1 , the 3 j symbol has a simple algebraic form. …For these and other results, and also cases in which any one of j 1 , j 2 , j 3 is 3 2 or 2 , see Edmonds (1974, pp. 125–127). … Even permutations of columns of a 3 j symbol leave it unchanged; odd permutations of columns produce a phase factor ( 1 ) j 1 + j 2 + j 3 , for example, …
    §34.3(vi) Sums
    For sums of products of 3 j symbols, see Varshalovich et al. (1988, pp. 259–262). …
    9: 4.17 Special Values and Limits
    Table 4.17.1: Trigonometric functions: values at multiples of 1 12 π .
    θ sin θ cos θ tan θ csc θ sec θ cot θ
    π / 3 1 2 3 1 2 3 2 3 3 2 1 3 3
    4.17.1 lim z 0 sin z z = 1 ,
    4.17.2 lim z 0 tan z z = 1 .
    4.17.3 lim z 0 1 cos z z 2 = 1 2 .
    10: 34.4 Definition: 6 j Symbol
    §34.4 Definition: 6 j Symbol
    The 6 j symbol is defined by the following double sum of products of 3 j symbols: …where the summation is taken over all admissible values of the m ’s and m ’s for each of the four 3 j symbols; compare (34.2.2) and (34.2.3). Except in degenerate cases the combination of the triangle inequalities for the four 3 j symbols in (34.4.1) is equivalent to the existence of a tetrahedron (possibly degenerate) with edges of lengths j 1 , j 2 , j 3 , l 1 , l 2 , l 3 ; see Figure 34.4.1. … For alternative expressions for the 6 j symbol, written either as a finite sum or as other terminating generalized hypergeometric series F 3 4 of unit argument, see Varshalovich et al. (1988, §§9.2.1, 9.2.3).