About the Project

Dougall 7F6(1) sum

AdvancedHelp

(0.005 seconds)

1—10 of 837 matching pages

1: 16.4 Argument Unity
Rogers–Dougall Very Well-Poised Sum
Dougall’s Very Well-Poised Sum
See Bailey (1964, §§4.3(7) and 7.6(1)) for the transformation formulas and Wilson (1978) for contiguous relations. … This is Dougall’s bilateral sum; see Andrews et al. (1999, §2.8).
2: 14.18 Sums
§14.18 Sums
§14.18(iii) Other Sums
Dougall’s Expansion
For collections of sums involving associated Legendre functions, see Hansen (1975, pp. 367–377, 457–460, and 475), Erdélyi et al. (1953a, §3.10), Gradshteyn and Ryzhik (2000, §8.92), Magnus et al. (1966, pp. 178–184), and Prudnikov et al. (1990, §§5.2, 6.5). …
3: 17.7 Special Cases of Higher ϕ s r Functions
q -Analog of Bailey’s F 1 2 ( 1 ) Sum
q -Analog of Gauss’s F 1 2 ( 1 ) Sum
q -Analog of Dixon’s F 2 3 ( 1 ) Sum
F. H. Jackson’s q -Analog of Dougall’s F 6 7 ( 1 ) Sum
Bailey’s Nonterminating Extension of Jackson’s ϕ 7 8 Sum
4: 15.4 Special Cases
The following results hold for principal branches when | z | < 1 , and by analytic continuation elsewhere. …
§15.4(ii) Argument Unity
Dougall’s Bilateral Sum
If a , b are not integers and ( c + d a b ) > 1 , then … where the limit interpretation (15.2.6), rather than (15.2.5), has to be taken when in (15.4.33) a = 1 3 , 4 3 , 7 3 , , and in (15.4.34) a = 0 , 1 , 2 , . …
5: Bibliography D
  • Delft Numerical Analysis Group (1973) On the computation of Mathieu functions. J. Engrg. Math. 7, pp. 39–61.
  • K. Dilcher (1996) Sums of products of Bernoulli numbers. J. Number Theory 60 (1), pp. 23–41.
  • A. M. Din (1981) A simple sum formula for Clebsch-Gordan coefficients. Lett. Math. Phys. 5 (3), pp. 207–211.
  • J. Dougall (1907) On Vandermonde’s theorem, and some more general expansions. Proc. Edinburgh Math. Soc. 25, pp. 114–132.
  • O. Dragoun and G. Heuser (1971) A program to calculate internal conversion coefficients for all atomic shells without screening. Comput. Phys. Comm. 2 (7), pp. 427–432.
  • 6: 23 Weierstrass Elliptic and Modular
    Functions
    7: 7 Error Functions, Dawson’s and Fresnel Integrals
    Chapter 7 Error Functions, Dawson’s and Fresnel Integrals
    8: 9.4 Maclaurin Series
    9.4.1 Ai ( z ) = Ai ( 0 ) ( 1 + 1 3 ! z 3 + 1 4 6 ! z 6 + 1 4 7 9 ! z 9 + ) + Ai ( 0 ) ( z + 2 4 ! z 4 + 2 5 7 ! z 7 + 2 5 8 10 ! z 10 + ) ,
    9.4.2 Ai ( z ) = Ai ( 0 ) ( 1 + 2 3 ! z 3 + 2 5 6 ! z 6 + 2 5 8 9 ! z 9 + ) + Ai ( 0 ) ( 1 2 ! z 2 + 1 4 5 ! z 5 + 1 4 7 8 ! z 8 + ) ,
    9.4.3 Bi ( z ) = Bi ( 0 ) ( 1 + 1 3 ! z 3 + 1 4 6 ! z 6 + 1 4 7 9 ! z 9 + ) + Bi ( 0 ) ( z + 2 4 ! z 4 + 2 5 7 ! z 7 + 2 5 8 10 ! z 10 + ) ,
    9.4.4 Bi ( z ) = Bi ( 0 ) ( 1 + 2 3 ! z 3 + 2 5 6 ! z 6 + 2 5 8 9 ! z 9 + ) + Bi ( 0 ) ( 1 2 ! z 2 + 1 4 5 ! z 5 + 1 4 7 8 ! z 8 + ) .
    9: 26.3 Lattice Paths: Binomial Coefficients
    The number of lattice paths from ( 0 , 0 ) to ( m , n ) , m n , that stay on or above the line y = x is ( m + n m ) ( m + n m 1 ) .
    26.3.3 n = 0 m ( m n ) x n = ( 1 + x ) m , m = 0 , 1 , ,
    26.3.4 m = 0 ( m + n m ) x m = 1 ( 1 x ) n + 1 , | x | < 1 .
    26.3.7 ( m + 1 n + 1 ) = k = n m ( k n ) , m n 0 ,
    26.3.10 ( m n ) = k = 0 n ( 1 ) n k ( m + 1 k ) , m n 0 ,
    10: 26.13 Permutations: Cycle Notation
    𝔖 n denotes the set of permutations of { 1 , 2 , , n } . … is ( 1 , 3 , 2 , 5 , 7 ) ( 4 ) ( 6 , 8 ) in cycle notation. …In consequence, (26.13.2) can also be written as ( 1 , 3 , 2 , 5 , 7 ) ( 6 , 8 ) . … For the example (26.13.2), this decomposition is given by ( 1 , 3 , 2 , 5 , 7 ) ( 6 , 8 ) = ( 1 , 3 ) ( 2 , 3 ) ( 2 , 5 ) ( 5 , 7 ) ( 6 , 8 ) . Again, for the example (26.13.2) a minimal decomposition into adjacent transpositions is given by ( 1 , 3 , 2 , 5 , 7 ) ( 6 , 8 ) = ( 2 , 3 ) ( 1 , 2 ) ( 4 , 5 ) ( 3 , 4 ) ( 2 , 3 ) ( 3 , 4 ) ( 4 , 5 ) ( 6 , 7 ) ( 5 , 6 ) ( 7 , 8 ) ( 6 , 7 ) : inv ( ( 1 , 3 , 2 , 5 , 7 ) ( 6 , 8 ) ) = 11 .