About the Project

q-Pfaff--Saalschutz sum

AdvancedHelp

(0.005 seconds)

1—10 of 374 matching pages

1: 16.4 Argument Unity
When k = 1 the function is said to be balanced or Saalschützian. …
Lerch Sum
PfaffSaalschütz Balanced Sum
Džrbasjan’s Sum
2: 17.4 Basic Hypergeometric Functions
In these references the factor ( ( 1 ) n q ( n 2 ) ) s r is not included in the sum. …
17.4.3 ψ s r ( a 1 , a 2 , , a r b 1 , b 2 , , b s ; q , z ) = ψ s r ( a 1 , a 2 , , a r ; b 1 , b 2 , , b s ; q , z ) = n = ( a 1 , a 2 , , a r ; q ) n ( 1 ) ( s r ) n q ( s r ) ( n 2 ) z n ( b 1 , b 2 , , b s ; q ) n = n = 0 ( a 1 , a 2 , , a r ; q ) n ( 1 ) ( s r ) n q ( s r ) ( n 2 ) z n ( b 1 , b 2 , , b s ; q ) n + n = 1 ( q / b 1 , q / b 2 , , q / b s ; q ) n ( q / a 1 , q / a 2 , , q / a r ; q ) n ( b 1 b 2 b s a 1 a 2 a r z ) n .
17.4.5 Φ ( 1 ) ( a ; b , b ; c ; q ; x , y ) = m , n 0 ( a ; q ) m + n ( b ; q ) m ( b ; q ) n x m y n ( q ; q ) m ( q ; q ) n ( c ; q ) m + n ,
17.4.7 Φ ( 3 ) ( a , a ; b , b ; c ; q ; x , y ) = m , n 0 ( a , b ; q ) m ( a , b ; q ) n x m y n ( q ; q ) m ( q ; q ) n ( c ; q ) m + n ,
The series (17.4.1) is said to be balanced or Saalschützian when it terminates, r = s , z = q , and …
3: 35.8 Generalized Hypergeometric Functions of Matrix Argument
35.8.1 F q p ( a 1 , , a p b 1 , , b q ; 𝐓 ) = k = 0 1 k ! | κ | = k [ a 1 ] κ [ a p ] κ [ b 1 ] κ [ b q ] κ Z κ ( 𝐓 ) .
PfaffSaalschütz Formula
4: 17.7 Special Cases of Higher ϕ s r Functions
Sum Related to (17.6.4)
q -PfaffSaalschütz Sum
Nonterminating Form of the q -Saalschütz Sum
Gasper–Rahman q -Analogs of the Karlsson–Minton Sums
Gosper’s Bibasic Sum
5: 4.27 Sums
§4.27 Sums
For sums of trigonometric and inverse trigonometric functions see Gradshteyn and Ryzhik (2000, Chapter 1), Hansen (1975, §§14–42), Oberhettinger (1973), and Prudnikov et al. (1986a, Chapter 5).
6: 24.1 Special Notation
It was used in Saalschütz (1893), Nielsen (1923), Schwatt (1962), and Whittaker and Watson (1927). …
7: 4.11 Sums
§4.11 Sums
8: 4.41 Sums
§4.41 Sums
For sums of hyperbolic functions see Gradshteyn and Ryzhik (2000, Chapter 1), Hansen (1975, §43), Prudnikov et al. (1986a, §5.3), and Zucker (1979).
9: 7.15 Sums
§7.15 Sums
For sums involving the error function see Hansen (1975, p. 423) and Prudnikov et al. (1986b, vol. 2, pp. 650–651).
10: Bibliography K
  • P. L. Kapitsa (1951b) The computation of the sums of negative even powers of roots of Bessel functions. Doklady Akad. Nauk SSSR (N.S.) 77, pp. 561–564.
  • Y. S. Kim, A. K. Rathie, and R. B. Paris (2013) An extension of Saalschütz’s summation theorem for the series F r + 2 r + 3 . Integral Transforms Spec. Funct. 24 (11), pp. 916–921.
  • N. M. Korobov (1958) Estimates of trigonometric sums and their applications. Uspehi Mat. Nauk 13 (4 (82)), pp. 185–192 (Russian).
  • C. Krattenthaler (1993) HYP and HYPQ. Mathematica packages for the manipulation of binomial sums and hypergeometric series respectively q -binomial sums and basic hypergeometric series. Séminaire Lotharingien de Combinatoire 30, pp. 61–76.