About the Project

of Hill equation

AdvancedHelp

(0.001 seconds)

21—30 of 30 matching pages

21: Bibliography Z
  • F. A. Zafiropoulos, T. N. Grapsa, O. Ragos, and M. N. Vrahatis (1996) On the Computation of Zeros of Bessel and Bessel-related Functions. In Proceedings of the Sixth International Colloquium on Differential Equations (Plovdiv, Bulgaria, 1995), D. Bainov (Ed.), Utrecht, pp. 409–416.
  • Zeilberger (website) Doron Zeilberger’s Maple Packages and Programs Department of Mathematics, Rutgers University, New Jersey.
  • A. H. Zemanian (1987) Distribution Theory and Transform Analysis, An Introduction and Generalized Functions with Applications. Dover, New York.
  • J. M. Zhang, X. C. Li, and C. K. Qu (1996) Error bounds for asymptotic solutions of second-order linear difference equations. J. Comput. Appl. Math. 71 (2), pp. 191–212.
  • 22: Bibliography E
  • A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi (1954b) Tables of Integral Transforms. Vol. II. McGraw-Hill Book Company, Inc., New York-Toronto-London.
  • A. Erdélyi (1942a) Integral equations for Heun functions. Quart. J. Math., Oxford Ser. 13, pp. 107–112.
  • A. Erdélyi (1942b) The Fuchsian equation of second order with four singularities. Duke Math. J. 9 (1), pp. 48–58.
  • A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi (1955) Higher Transcendental Functions. Vol. III. McGraw-Hill Book Company, Inc., New York-Toronto-London.
  • W. N. Everitt (2005a) A catalogue of Sturm-Liouville differential equations. In Sturm-Liouville theory, pp. 271–331.
  • 23: Bibliography V
  • G. Vedeler (1950) A Mathieu equation for ships rolling among waves. I, II. Norske Vid. Selsk. Forh., Trondheim 22 (25–26), pp. 113–123.
  • H. Volkmer (1983) Integralgleichungen für periodische Lösungen Hill’scher Differentialgleichungen. Analysis 3 (1-4), pp. 189–203 (German).
  • H. Volkmer (1998) On the growth of convergence radii for the eigenvalues of the Mathieu equation. Math. Nachr. 192, pp. 239–253.
  • H. Volkmer (2004a) Error estimates for Rayleigh-Ritz approximations of eigenvalues and eigenfunctions of the Mathieu and spheroidal wave equation. Constr. Approx. 20 (1), pp. 39–54.
  • A. P. Vorob’ev (1965) On the rational solutions of the second Painlevé equation. Differ. Uravn. 1 (1), pp. 79–81 (Russian).
  • 24: Bibliography I
  • E. L. Ince (1926) Ordinary Differential Equations. Longmans, Green and Co., London.
  • A. Iserles (1996) A First Course in the Numerical Analysis of Differential Equations. Cambridge Texts in Applied Mathematics, No. 15, Cambridge University Press, Cambridge.
  • A. R. Its, A. S. Fokas, and A. A. Kapaev (1994) On the asymptotic analysis of the Painlevé equations via the isomonodromy method. Nonlinearity 7 (5), pp. 1291–1325.
  • A. R. Its and V. Yu. Novokshënov (1986) The Isomonodromic Deformation Method in the Theory of Painlevé Equations. Lecture Notes in Mathematics, Vol. 1191, Springer-Verlag, Berlin.
  • C. Itzykson and J. B. Zuber (1980) Quantum Field Theory. International Series in Pure and Applied Physics, McGraw-Hill International Book Co., New York.
  • 25: Bibliography L
  • C. G. Lambe and D. R. Ward (1934) Some differential equations and associated integral equations. Quart. J. Math. (Oxford) 5, pp. 81–97.
  • L. D. Landau and E. M. Lifshitz (1962) The Classical Theory of Fields. Pergamon Press, Oxford.
  • E. W. Leaver (1986) Solutions to a generalized spheroidal wave equation: Teukolsky’s equations in general relativity, and the two-center problem in molecular quantum mechanics. J. Math. Phys. 27 (5), pp. 1238–1265.
  • N. A. Lukaševič (1971) The second Painlevé equation. Differ. Uravn. 7 (6), pp. 1124–1125 (Russian).
  • Y. L. Luke (1962) Integrals of Bessel Functions. McGraw-Hill Book Co., Inc., New York.
  • 26: Bibliography R
  • S. O. Rice (1954) Diffraction of plane radio waves by a parabolic cylinder. Calculation of shadows behind hills. Bell System Tech. J. 33, pp. 417–504.
  • È. Ya. Riekstynš (1991) Asymptotics and Bounds of the Roots of Equations (Russian). Zinatne, Riga.
  • W. Rudin (1966) Real and complex analysis. McGraw-Hill Book Co., New York-Toronto, Ont.-London.
  • W. Rudin (1973) Functional Analysis. McGraw-Hill Book Co., New York.
  • W. Rudin (1976) Principles of Mathematical Analysis. 3rd edition, McGraw-Hill Book Co., New York.
  • 27: Bibliography P
  • P. Painlevé (1906) Sur les équations différentielles du second ordre à points critiques fixès. C.R. Acad. Sc. Paris 143, pp. 1111–1117.
  • A. Papoulis (1977) Signal Analysis. McGraw-Hill, New York.
  • R. B. Paris (1992a) Smoothing of the Stokes phenomenon for high-order differential equations. Proc. Roy. Soc. London Ser. A 436, pp. 165–186.
  • R. B. Paris (2002b) A uniform asymptotic expansion for the incomplete gamma function. J. Comput. Appl. Math. 148 (2), pp. 323–339.
  • G. Pólya (1949) Remarks on computing the probability integral in one and two dimensions. In Proceedings of the Berkeley Symposium on Mathematical Statistics and Probability, 1945, 1946, pp. 63–78.
  • 28: 25.12 Polylogarithms
    The notation Li 2 ( z ) was introduced in Lewin (1981) for a function discussed in Euler (1768) and called the dilogarithm in Hill (1828): … The remainder of the equations in this subsection apply to principal branches. …
    29: Bibliography B
  • A. P. Bassom, P. A. Clarkson, A. C. Hicks, and J. B. McLeod (1992) Integral equations and exact solutions for the fourth Painlevé equation. Proc. Roy. Soc. London Ser. A 437, pp. 1–24.
  • P. M. Batchelder (1967) An Introduction to Linear Difference Equations. Dover Publications Inc., New York.
  • C. M. Bender and S. A. Orszag (1978) Advanced Mathematical Methods for Scientists and Engineers. McGraw-Hill Book Co., New York.
  • F. Bethuel (1998) Vortices in Ginzburg-Landau Equations. In Proceedings of the International Congress of Mathematicians, Vol. III (Berlin, 1998), pp. 11–19.
  • G. Birkhoff and G. Rota (1989) Ordinary differential equations. Fourth edition, John Wiley & Sons, Inc., New York.
  • 30: Bibliography J
  • E. Jahnke, F. Emde, and F. Lösch (1966) Tafeln höherer Funktionen (Tables of Higher Functions). 7th edition, B. G. Teubner, Stuttgart (Bilingual).
  • M. Jimbo and T. Miwa (1981) Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. II. Phys. D 2 (3), pp. 407–448.
  • D. S. Jones, M. J. Plank, and B. D. Sleeman (2010) Differential equations and mathematical biology. Chapman & Hall/CRC Mathematical and Computational Biology Series, CRC Press, Boca Raton, FL.
  • D. S. Jones and B. D. Sleeman (2003) Differential equations and mathematical biology. Chapman & Hall/CRC Mathematical Biology and Medicine Series, Chapman & Hall/CRC, Boca Raton, FL.
  • N. Joshi and A. V. Kitaev (2001) On Boutroux’s tritronquée solutions of the first Painlevé equation. Stud. Appl. Math. 107 (3), pp. 253–291.