About the Project

integral equation for Lamé functions

AdvancedHelp

(0.008 seconds)

21—28 of 28 matching pages

21: Bibliography W
  • Z. Wang and R. Wong (2005) Linear difference equations with transition points. Math. Comp. 74 (250), pp. 629–653.
  • R. S. Ward (1987) The Nahm equations, finite-gap potentials and Lamé functions. J. Phys. A 20 (10), pp. 2679–2683.
  • H. Watanabe (1995) Solutions of the fifth Painlevé equation. I. Hokkaido Math. J. 24 (2), pp. 231–267.
  • A. D. Wheelon (1968) Tables of Summable Series and Integrals Involving Bessel Functions. Holden-Day, San Francisco, CA.
  • H. S. Wilf and D. Zeilberger (1992b) Rational function certification of multisum/integral/“ q ” identities. Bull. Amer. Math. Soc. (N.S.) 27 (1), pp. 148–153.
  • 22: Bibliography R
  • W. H. Reid (1995) Integral representations for products of Airy functions. Z. Angew. Math. Phys. 46 (2), pp. 159–170.
  • W. H. Reid (1997a) Integral representations for products of Airy functions. II. Cubic products. Z. Angew. Math. Phys. 48 (4), pp. 646–655.
  • W. H. Reid (1997b) Integral representations for products of Airy functions. III. Quartic products. Z. Angew. Math. Phys. 48 (4), pp. 656–664.
  • S. Ritter (1998) On the computation of Lamé functions, of eigenvalues and eigenfunctions of some potential operators. Z. Angew. Math. Mech. 78 (1), pp. 66–72.
  • G. M. Roper (1951) Some Applications of the Lamé Function Solutions of the Linearised Supersonic Flow Equations. Technical Reports and Memoranda Technical Report 2865, Aeronautical Research Council (Great Britain).
  • 23: Bibliography B
  • A. W. Babister (1967) Transcendental Functions Satisfying Nonhomogeneous Linear Differential Equations. The Macmillan Co., New York.
  • G. E. Barr (1968) A note on integrals involving parabolic cylinder functions. SIAM J. Appl. Math. 16 (1), pp. 71–74.
  • A. P. Bassom, P. A. Clarkson, A. C. Hicks, and J. B. McLeod (1992) Integral equations and exact solutions for the fourth Painlevé equation. Proc. Roy. Soc. London Ser. A 437, pp. 1–24.
  • S. Bochner (1952) Bessel functions and modular relations of higher type and hyperbolic differential equations. Comm. Sém. Math. Univ. Lund [Medd. Lunds Univ. Mat. Sem.] 1952 (Tome Supplementaire), pp. 12–20.
  • M. Brack, M. Mehta, and K. Tanaka (2001) Occurrence of periodic Lamé functions at bifurcations in chaotic Hamiltonian systems. J. Phys. A 34 (40), pp. 8199–8220.
  • 24: Bibliography D
  • A. Dienstfrey and J. Huang (2006) Integral representations for elliptic functions. J. Math. Anal. Appl. 316 (1), pp. 142–160.
  • B. A. Dubrovin (1981) Theta functions and non-linear equations. Uspekhi Mat. Nauk 36 (2(218)), pp. 11–80 (Russian).
  • T. M. Dunster, D. A. Lutz, and R. Schäfke (1993) Convergent Liouville-Green expansions for second-order linear differential equations, with an application to Bessel functions. Proc. Roy. Soc. London Ser. A 440, pp. 37–54.
  • T. M. Dunster (1996a) Asymptotic solutions of second-order linear differential equations having almost coalescent turning points, with an application to the incomplete gamma function. Proc. Roy. Soc. London Ser. A 452, pp. 1331–1349.
  • T. M. Dunster (2001a) Convergent expansions for solutions of linear ordinary differential equations having a simple turning point, with an application to Bessel functions. Stud. Appl. Math. 107 (3), pp. 293–323.
  • 25: Bibliography J
  • J. K. M. Jansen (1977) Simple-periodic and Non-periodic Lamé Functions. Mathematical Centre Tracts, No. 72, Mathematisch Centrum, Amsterdam.
  • D. S. Jones, M. J. Plank, and B. D. Sleeman (2010) Differential equations and mathematical biology. Chapman & Hall/CRC Mathematical and Computational Biology Series, CRC Press, Boca Raton, FL.
  • D. S. Jones and B. D. Sleeman (2003) Differential equations and mathematical biology. Chapman & Hall/CRC Mathematical Biology and Medicine Series, Chapman & Hall/CRC, Boca Raton, FL.
  • D. S. Jones (1972) Asymptotic behavior of integrals. SIAM Rev. 14 (2), pp. 286–317.
  • N. Joshi and A. V. Kitaev (2001) On Boutroux’s tritronquée solutions of the first Painlevé equation. Stud. Appl. Math. 107 (3), pp. 253–291.
  • 26: Bibliography M
  • N. W. Macfadyen and P. Winternitz (1971) Crossing symmetric expansions of physical scattering amplitudes: The O ( 2 , 1 ) group and Lamé functions. J. Mathematical Phys. 12, pp. 281–293.
  • J. Meixner (1944) Die Laméschen Wellenfunktionen des Drehellipsoids. Forschungsbericht No. 1952 ZWB (German).
  • I. Mező (2020) An integral representation for the Lambert W function.
  • J. C. P. Miller (1946) The Airy Integral, Giving Tables of Solutions of the Differential Equation y ′′ = x y . British Association for the Advancement of Science, Mathematical Tables Part-Vol. B, Cambridge University Press, Cambridge.
  • L. A. Muraveĭ (1976) Zeros of the function A i ( z ) σ A i ( z ) . Differential Equations 11, pp. 797–811.
  • 27: Errata
  • Chapter 1 Additions

    The following additions were made in Chapter 1:

  • Equation (14.6.6)
    14.6.6 𝖯 ν m ( x ) = ( 1 x 2 ) m / 2 x 1 x 1 𝖯 ν ( x ) ( d x ) m

    The right-hand side has been corrected by replacing the Legendre function P ν ( x ) with the Ferrers function 𝖯 ν ( x ) .

  • Equations (33.11.2)–(33.11.7)

    The arguments of some of the functions in (33.11.2)–(33.11.7) were included to improve clarity of the presentation.

  • Equation (15.6.8)

    In §15.6, it was noted that (15.6.8) can be rewritten as a fractional integral.

  • Equation (14.2.7)

    The Wronskian was generalized to include both associated Legendre and Ferrers functions.

  • 28: Bibliography P
  • J. Patera and P. Winternitz (1973) A new basis for the representation of the rotation group. Lamé and Heun polynomials. J. Mathematical Phys. 14 (8), pp. 1130–1139.
  • R. Piessens (1982) Automatic computation of Bessel function integrals. Comput. Phys. Comm. 25 (3), pp. 289–295.
  • R. Piessens and M. Branders (1985) A survey of numerical methods for the computation of Bessel function integrals. Rend. Sem. Mat. Univ. Politec. Torino (Special Issue), pp. 249–265.
  • G. Pólya (1949) Remarks on computing the probability integral in one and two dimensions. In Proceedings of the Berkeley Symposium on Mathematical Statistics and Probability, 1945, 1946, pp. 63–78.
  • M. Puoskari (1988) A method for computing Bessel function integrals. J. Comput. Phys. 75 (2), pp. 334–344.