About the Project
Notations

Notations L

𝕃
lattice in ; §23.2(i)
L n
Lebesgue constant; (1.8.8)
L 2 ( X , d x )
Lebesgue–Stieltjes measurable, square integrable, complex-valued functions; §1.18(ii)
L n ( x ) = L n ( 0 ) ( x )
Laguerre polynomial; §18.1(ii)
(with Ln(α)(x): Laguerre (or generalized Laguerre) polynomial)
L ν ( γ ) ( 𝐓 )
Laguerre function of matrix argument; (35.6.3)
𝐋 ν ( z )
modified Struve function; (11.2.2)
L n ( α ) ( x )
Laguerre (or generalized Laguerre) polynomial; Table 18.3.1
( f ) ( s )
Laplace transform; (1.14.17)
L ( s , χ )
Dirichlet L-function; (25.15.1)
L ^ n ( k ) ( x )
exceptional Laguerre polynomial; (18.36.4)
L c ν ( 2 m ) ( ψ , k 2 ) = ( 1 ) m 𝐸𝑐 ν 2 m ( z , k 2 )
notation used by Jansen (1977); §29.1
(with 𝐸𝑐νm(z,k2): Lamé function)
L c ν ( 2 m + 1 ) ( ψ , k 2 ) = ( 1 ) m 𝐸𝑠 ν 2 m + 1 ( z , k 2 )
notation used by Jansen (1977); §29.1
(with 𝐸𝑠νm(z,k2): Lamé function)
L n ( α ) ( x ; q )
q-Laguerre polynomial; (18.27.15)
L s ν ( 2 m + 1 ) ( ψ , k 2 ) = ( 1 ) m 𝐸𝑐 ν 2 m + 1 ( z , k 2 )
notation used by Jansen (1977); §29.1
(with 𝐸𝑐νm(z,k2): Lamé function)
L s ν ( 2 m + 2 ) ( ψ , k 2 ) = ( 1 ) m 𝐸𝑠 ν 2 m + 2 ( z , k 2 )
notation used by Jansen (1977); §29.1
(with 𝐸𝑠νm(z,k2): Lamé function)
λ ( n )
Liouville’s function; (27.2.13)
Λ ( n )
Mangoldt’s function; (27.2.14)
λ m n ( γ ) = λ n m ( γ 2 ) + γ 2
alternative notation for eigenvalues of the spheroidal differential equation; §30.1
(with λnm(γ2): eigenvalues of the spheroidal differential equation)
λ ν + 2 n ( q )
eigenvalues of Mathieu equation; §28.12(i)
λ n m ( γ 2 )
eigenvalues of the spheroidal differential equation; §30.3(i)
λ ( τ )
elliptic modular function; (23.15.6)
li ( x )
logarithmic integral; (6.2.8)
Li 2 ( z )
dilogarithm; (25.12.1)
Li s ( z )
polylogarithm; (25.12.10)
lim inf
least limit point; Common Notations and Definitions
Ln z
general logarithm function; (4.2.1)
ln z
principal branch of logarithm function; (4.2.2)
log 10 z
common logarithm; §4.2(ii)
log a z
logarithm to general base; §4.2(ii)