About the Project

double series

AdvancedHelp

(0.001 seconds)

21—30 of 49 matching pages

21: Bibliography Z
β–Ί
  • M. R. Zaghloul (2016) Remark on “Algorithm 916: computing the Faddeyeva and Voigt functions”: efficiency improvements and Fortran translation. ACM Trans. Math. Softw. 42 (3), pp. 26:1–26:9.
  • β–Ί
  • J. Zhang and J. A. Belward (1997) Chebyshev series approximations for the Bessel function Y n ⁒ ( z ) of complex argument. Appl. Math. Comput. 88 (2-3), pp. 275–286.
  • β–Ί
  • S. Zhang and J. Jin (1996) Computation of Special Functions. John Wiley & Sons Inc., New York.
  • β–Ί
  • I. J. Zucker (1979) The summation of series of hyperbolic functions. SIAM J. Math. Anal. 10 (1), pp. 192–206.
  • β–Ί
  • M. I. Ε½urina and L. N. Karmazina (1964) Tables of the Legendre functions P 1 / 2 + i ⁒ Ο„ ⁒ ( x ) . Part I. Translated by D. E. Brown. Mathematical Tables Series, Vol. 22, Pergamon Press, Oxford.
  • 22: Bibliography S
    β–Ί
  • M. J. Seaton (1982) Coulomb functions analytic in the energy. Comput. Phys. Comm. 25 (1), pp. 87–95.
  • β–Ί
  • J. Segura and A. Gil (1998) Parabolic cylinder functions of integer and half-integer orders for nonnegative arguments. Comput. Phys. Comm. 115 (1), pp. 69–86.
  • β–Ί
  • B. L. Shea (1988) Algorithm AS 239. Chi-squared and incomplete gamma integral. Appl. Statist. 37 (3), pp. 466–473.
  • β–Ί
  • P. N. Shivakumar and J. Xue (1999) On the double points of a Mathieu equation. J. Comput. Appl. Math. 107 (1), pp. 111–125.
  • β–Ί
  • S. K. Suslov (2003) An Introduction to Basic Fourier Series. Developments in Mathematics, Vol. 9, Kluwer Academic Publishers, Dordrecht.
  • 23: 25.6 Integer Arguments
    β–Ί
    25.6.7 ΢ ⁑ ( 2 ) = 0 1 0 1 1 1 x ⁒ y ⁒ d x ⁒ d y .
    β–Ί
    25.6.8 ΢ ⁑ ( 2 ) = 3 ⁒ k = 1 1 k 2 ⁒ ( 2 ⁒ k k ) .
    β–Ί
    25.6.9 ΢ ⁑ ( 3 ) = 5 2 ⁒ k = 1 ( 1 ) k 1 k 3 ⁒ ( 2 ⁒ k k ) .
    β–Ί
    25.6.10 ΢ ⁑ ( 4 ) = 36 17 ⁒ k = 1 1 k 4 ⁒ ( 2 ⁒ k k ) .
    β–Ί
    25.6.12 ΞΆ ′′ ⁑ ( 0 ) = 1 2 ⁒ ( ln ⁑ ( 2 ⁒ Ο€ ) ) 2 + 1 2 ⁒ Ξ³ 2 1 24 ⁒ Ο€ 2 + Ξ³ 1 ,
    24: Bibliography F
    β–Ί
  • B. R. Fabijonas (2004) Algorithm 838: Airy functions. ACM Trans. Math. Software 30 (4), pp. 491–501.
  • β–Ί
  • FDLIBM (free C library)
  • β–Ί
  • C. Ferreira and J. L. López (2001) An asymptotic expansion of the double gamma function. J. Approx. Theory 111 (2), pp. 298–314.
  • β–Ί
  • W. B. Ford (1960) Studies on Divergent Series and Summability & The Asymptotic Developments of Functions Defined by Maclaurin Series. Chelsea Publishing Co., New York.
  • β–Ί
  • T. Fukushima (2012) Series expansions of symmetric elliptic integrals. Math. Comp. 81 (278), pp. 957–990.
  • 25: 10.74 Methods of Computation
    β–Ί
    §10.74(i) Series Expansions
    β–ΊThe power-series expansions given in §§10.2 and 10.8, together with the connection formulas of §10.4, can be used to compute the Bessel and Hankel functions when the argument x or z is sufficiently small in absolute value. … β–ΊIn other circumstances the power series are prone to slow convergence and heavy numerical cancellation. … β–ΊMoreover, because of their double asymptotic properties (§10.41(v)) these expansions can also be used for large x or | z | , whether or not Ξ½ is large. … β–ΊIn the interval 0 < x < Ξ½ , J Ξ½ ⁑ ( x ) needs to be integrated in the forward direction and Y Ξ½ ⁑ ( x ) in the backward direction, with initial values for the former obtained from the power-series expansion (10.2.2) and for the latter from asymptotic expansions (§§10.17(i) and 10.20(i)). …
    26: Bibliography O
    β–Ί
  • O. M. Ogreid and P. Osland (1998) Summing one- and two-dimensional series related to the Euler series. J. Comput. Appl. Math. 98 (2), pp. 245–271.
  • β–Ί
  • A. B. Olde Daalhuis (2004a) Inverse factorial-series solutions of difference equations. Proc. Edinb. Math. Soc. (2) 47 (2), pp. 421–448.
  • β–Ί
  • J. Oliver (1977) An error analysis of the modified Clenshaw method for evaluating Chebyshev and Fourier series. J. Inst. Math. Appl. 20 (3), pp. 379–391.
  • β–Ί
  • F. W. J. Olver and J. M. Smith (1983) Associated Legendre functions on the cut. J. Comput. Phys. 51 (3), pp. 502–518.
  • β–Ί
  • F. W. J. Olver (1994a) Asymptotic expansions of the coefficients in asymptotic series solutions of linear differential equations. Methods Appl. Anal. 1 (1), pp. 1–13.
  • 27: 33.9 Expansions in Series of Bessel Functions
    §33.9 Expansions in Series of Bessel Functions
    β–Ίwhere the function 𝗃 is as in §10.47(ii), a 1 = 0 , a 0 = ( 2 ⁒ β„“ + 1 ) !! ⁒ C β„“ ⁑ ( Ξ· ) , and …The series (33.9.1) converges for all finite values of Ξ· and ρ . … β–ΊThe series (33.9.3) and (33.9.4) converge for all finite positive values of | Ξ· | and ρ . …
    28: Bibliography K
    β–Ί
  • D. K. Kahaner, C. Moler, and S. Nash (1989) Numerical Methods and Software. Prentice Hall, Englewood Cliffs, N.J..
  • β–Ί
  • D. Karp, A. Savenkova, and S. M. Sitnik (2007) Series expansions for the third incomplete elliptic integral via partial fraction decompositions. J. Comput. Appl. Math. 207 (2), pp. 331–337.
  • β–Ί
  • T. H. Koornwinder (2007a) The relationship between Zhedanov’s algebra AW ⁒ ( 3 ) and the double affine Hecke algebra in the rank one case. SIGMA 3, pp. Paper 063, 15 pp..
  • β–Ί
  • C. Krattenthaler (1993) HYP and HYPQ. Mathematica packages for the manipulation of binomial sums and hypergeometric series respectively q -binomial sums and basic hypergeometric series. Séminaire Lotharingien de Combinatoire 30, pp. 61–76.
  • β–Ί
  • P. Kravanja, O. Ragos, M. N. Vrahatis, and F. A. Zafiropoulos (1998) ZEBEC: A mathematical software package for computing simple zeros of Bessel functions of real order and complex argument. Comput. Phys. Comm. 113 (2-3), pp. 220–238.
  • 29: Bibliography T
    β–Ί
  • A. Takemura (1984) Zonal Polynomials. Institute of Mathematical Statistics Lecture Notes—Monograph Series, 4, Institute of Mathematical Statistics, Hayward, CA.
  • β–Ί
  • I. C. Tang (1969) Some definite integrals and Fourier series for Jacobian elliptic functions. Z. Angew. Math. Mech. 49, pp. 95–96.
  • β–Ί
  • G. Taubmann (1992) Parabolic cylinder functions U ⁒ ( n , x ) for natural n and positive x . Comput. Phys. Commun. 69, pp. 415–419.
  • β–Ί
  • I. J. Thompson and A. R. Barnett (1985) COULCC: A continued-fraction algorithm for Coulomb functions of complex order with complex arguments. Comput. Phys. Comm. 36 (4), pp. 363–372.
  • β–Ί
  • G. P. Tolstov (1962) Fourier Series. Prentice-Hall Inc., Englewood Cliffs, N.J..
  • 30: 28.2 Definitions and Basic Properties
    β–ΊIf Ξ½ ^ = 0 or 1 , or equivalently, Ξ½ = n , then Ξ½ is a double root of the characteristic equation, otherwise it is a simple root. … β–ΊThe Fourier series of a Floquet solution β–Ί
    28.2.18 w ⁑ ( z ) = n = c 2 ⁒ n ⁒ e i ⁒ ( ν + 2 ⁒ n ) ⁒ z
    β–ΊNear q = 0 , a n ⁑ ( q ) and b n ⁑ ( q ) can be expanded in power series in q (see §28.6(i)); elsewhere they are determined by analytic continuation (see §28.7). …