About the Project

.世界杯决赛的时间_『网址:687.vii』日本2014年世界杯成绩_b5p6v3_2022年11月29日5时20分49秒_ewk244wui

AdvancedHelp

(0.004 seconds)

11—20 of 235 matching pages

11: Bibliography D
  • D. Dai, M. E. H. Ismail, and X. Wang (2014) Plancherel-Rotach asymptotic expansion for some polynomials from indeterminate moment problems. Constr. Approx. 40 (1), pp. 61–104.
  • B. Davies (1984) Integral Transforms and their Applications. 2nd edition, Applied Mathematical Sciences, Vol. 25, Springer-Verlag, New York.
  • P. J. Davis and P. Rabinowitz (1984) Methods of Numerical Integration. 2nd edition, Computer Science and Applied Mathematics, Academic Press Inc., Orlando, FL.
  • T. M. Dunster (2014) Olver’s error bound methods applied to linear ordinary differential equations having a simple turning point. Anal. Appl. (Singap.) 12 (4), pp. 385–402.
  • J. Dutka (1981) The incomplete beta function—a historical profile. Arch. Hist. Exact Sci. 24 (1), pp. 1129.
  • 12: Bibliography S
  • J. L. Schiff (1999) The Laplace Transform: Theory and Applications. Undergraduate Texts in Mathematics, Springer-Verlag, New York.
  • M. J. Seaton and G. Peach (1962) The determination of phases of wave functions. Proc. Phys. Soc. 79 (6), pp. 1296–1297.
  • M. J. Seaton (1984) The accuracy of iterated JWBK approximations for Coulomb radial functions. Comput. Phys. Comm. 32 (2), pp. 115–119.
  • J. D. Secada (1999) Numerical evaluation of the Hankel transform. Comput. Phys. Comm. 116 (2-3), pp. 278–294.
  • B. Simon (1995) Operators with Singular Continuous Spectrum: I. General Operators. Annals of Mathematics 141 (1), pp. 131–145.
  • 13: Bibliography E
  • A. R. Edmonds (1974) Angular Momentum in Quantum Mechanics. 3rd printing, with corrections, 2nd edition, Princeton University Press, Princeton, NJ.
  • U. T. Ehrenmark (1995) The numerical inversion of two classes of Kontorovich-Lebedev transform by direct quadrature. J. Comput. Appl. Math. 61 (1), pp. 43–72.
  • Á. Elbert and A. Laforgia (1997) An upper bound for the zeros of the derivative of Bessel functions. Rend. Circ. Mat. Palermo (2) 46 (1), pp. 123–130.
  • G. A. Evans and J. R. Webster (1999) A comparison of some methods for the evaluation of highly oscillatory integrals. J. Comput. Appl. Math. 112 (1-2), pp. 55–69.
  • H. Exton (1983) The asymptotic behaviour of the inhomogeneous Airy function Hi ( z ) . Math. Chronicle 12, pp. 99–104.
  • 14: Bibliography T
  • N. M. Temme (1993) Asymptotic estimates of Stirling numbers. Stud. Appl. Math. 89 (3), pp. 233–243.
  • N. M. Temme (2015) Asymptotic Methods for Integrals. Series in Analysis, Vol. 6, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ.
  • J. S. Thompson (1996) High Speed Numerical Integration of Fermi Dirac Integrals. Master’s Thesis, Naval Postgraduate School, Monterey, CA.
  • E. C. Titchmarsh (1962b) The Theory of Functions. 2nd edition, Oxford University Press, Oxford.
  • L. N. Trefethen and D. Bau (1997) Numerical Linear Algebra. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA.
  • 15: Bibliography O
  • K. Okamoto (1987a) Studies on the Painlevé equations. I. Sixth Painlevé equation P VI . Ann. Mat. Pura Appl. (4) 146, pp. 337–381.
  • F. W. J. Olver (1951) A further method for the evaluation of zeros of Bessel functions and some new asymptotic expansions for zeros of functions of large order. Proc. Cambridge Philos. Soc. 47, pp. 699–712.
  • F. W. J. Olver (1952) Some new asymptotic expansions for Bessel functions of large orders. Proc. Cambridge Philos. Soc. 48 (3), pp. 414–427.
  • F. W. J. Olver (1959) Uniform asymptotic expansions for Weber parabolic cylinder functions of large orders. J. Res. Nat. Bur. Standards Sect. B 63B, pp. 131–169.
  • J. M. Ortega and W. C. Rheinboldt (1970) Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, New York.
  • 16: 25.21 Software
    §25.21(vii) Fermi–Dirac and Bose–Einstein Integrals
    17: 12.10 Uniform Asymptotic Expansions for Large Parameter
    These cases are treated in §§12.10(vii)12.10(viii). …
    12.10.23 η = 1 2 arccos t 1 2 t 1 t 2 ,
    §12.10(vii) Negative a , 2 a < x < . Expansions in Terms of Airy Functions
    12.10.40 ϕ ( ζ ) = ( ζ t 2 1 ) 1 4 .
    12.10.41 t = 1 + w 1 10 w 2 + 11 350 w 3 823 63000 w 4 + 1 50653 242 55000 w 5 + , | ζ | < ( 3 4 π ) 2 3 .
    18: 3.6 Linear Difference Equations
    In practice, however, problems of severe instability often arise and in §§3.6(ii)3.6(vii) we show how these difficulties may be overcome. …
    Table 3.6.1: Weber function w n = 𝐄 n ( 1 ) computed by Olver’s algorithm.
    n p n e n e n / ( p n p n + 1 ) w n
    11 0.29154 738 ×10¹⁰ 0.37225 201 ×10¹⁰ 0.19952 026 ×10⁻¹⁰ 0.58373 946 ×10⁻¹
    §3.6(vii) Linear Difference Equations of Other Orders
    3.6.17 a n w n + 1 b n w n = d n .
    3.6.18 a n , k w n + k + a n , k 1 w n + k 1 + + a n , 0 w n = d n ,
    19: Bibliography V
  • J. Van Deun and R. Cools (2008) Integrating products of Bessel functions with an additional exponential or rational factor. Comput. Phys. Comm. 178 (8), pp. 578–590.
  • H. Volkmer and J. J. Wood (2014) A note on the asymptotic expansion of generalized hypergeometric functions. Anal. Appl. (Singap.) 12 (1), pp. 107–115.
  • H. Volkmer (2004b) Four remarks on eigenvalues of Lamé’s equation. Anal. Appl. (Singap.) 2 (2), pp. 161–175.
  • 20: 16.25 Methods of Computation
    See §§3.6(vii), 3.7(iii), Olde Daalhuis and Olver (1998), Lozier (1980), and Wimp (1984, Chapters 7, 8).