About the Project

rational potential

AdvancedHelp

(0.001 seconds)

1—10 of 11 matching pages

1: 18.39 Applications in the Physical Sciences
c) A Rational SUSY Potential argument
See accompanying text
Figure 18.39.1: Graphs of the first and fourth excited state eigenfunctions of the harmonic oscillator, for = k = m = 1 , of (18.39.13), in ψ 1 ( x ) , ψ 4 ( x ) and those of the rational potential of (18.39.19), in ψ ^ 3 ( x ) , ψ ^ 6 ( x ) . … Magnify
2: 18.36 Miscellaneous Polynomials
In §18.39(i) it is seen that the functions, w ( x ) H ^ n + 3 ( x ) , are solutions of a Schrödinger equation with a rational potential energy; and, in spite of first appearances, the Sturm oscillation theorem, Simon (2005c, Theorem 3.3, p. 35), is satisfied. …
3: Bibliography Y
  • A. I. Yablonskiĭ (1959) On rational solutions of the second Painlevé equation. Vesti Akad. Navuk. BSSR Ser. Fiz. Tkh. Nauk. 3, pp. 30–35 (Russian).
  • K. Yang and M. de Llano (1989) Simple Variational Proof That Any Two-Dimensional Potential Well Supports at Least One Bound State. American Journal of Physics 57 (1), pp. 85–86.
  • 4: 18.38 Mathematical Applications
    Analogues of the original Dunkl operator (the rational case) were introduced by Heckman and Cherednik for the trigonometric case, and by Cherednik for the q -case. … The solved Schrödinger equations of §18.39(i) involve shape invariant potentials, and thus are in the family of supersymmetric or SUSY potentials. SUSY leads to algebraic simplifications in generating excited states, and partner potentials with closely related energy spectra, from knowledge of a single ground state wave function. … EOP’s are the subject of recent work on rational solutions to the fourth Painlevé equation, see Clarkson (2003a) and Marquette and Quesne (2016),where use of Hermite EOP’s makes a connection to quantum mechanics. …
    5: Bibliography S
  • H. Sakai (2001) Rational surfaces associated with affine root systems and geometry of the Painlevé equations. Comm. Math. Phys. 220 (1), pp. 165–229.
  • T. Schmelzer and L. N. Trefethen (2007) Computing the gamma function using contour integrals and rational approximations. SIAM J. Numer. Anal. 45 (2), pp. 558–571.
  • B. Simon (1973) Resonances in n -body quantum systems with dilatation analytic potentials and the foundations of time-dependent perturbation theory. Ann. of Math. (2) 97, pp. 247–274.
  • I. N. Sneddon (1966) Mixed Boundary Value Problems in Potential Theory. North-Holland Publishing Co., Amsterdam.
  • C. Snow (1952) Hypergeometric and Legendre Functions with Applications to Integral Equations of Potential Theory. National Bureau of Standards Applied Mathematics Series, No. 19, U. S. Government Printing Office, Washington, D.C..
  • 6: Bibliography W
  • R. S. Ward (1987) The Nahm equations, finite-gap potentials and Lamé functions. J. Phys. A 20 (10), pp. 2679–2683.
  • M. I. Weinstein and J. B. Keller (1985) Hill’s equation with a large potential. SIAM J. Appl. Math. 45 (2), pp. 200–214.
  • E. J. Weniger and J. Čížek (1990) Rational approximations for the modified Bessel function of the second kind. Comput. Phys. Comm. 59 (3), pp. 471–493.
  • E. J. Weniger (2003) A rational approximant for the digamma function. Numer. Algorithms 33 (1-4), pp. 499–507.
  • H. Werner, J. Stoer, and W. Bommas (1967) Rational Chebyshev approximation. Numer. Math. 10 (4), pp. 289–306.
  • 7: Bibliography H
  • R. L. Hall, N. Saad, and K. D. Sen (2010) Soft-core Coulomb potentials and Heun’s differential equation. J. Math. Phys. 51 (2), pp. Art. ID 022107, 19 pages.
  • S. P. Hastings and J. B. McLeod (1980) A boundary value problem associated with the second Painlevé transcendent and the Korteweg-de Vries equation. Arch. Rational Mech. Anal. 73 (1), pp. 31–51.
  • D. R. Herrick and S. O’Connor (1998) Inverse virial symmetry of diatomic potential curves. J. Chem. Phys. 109 (1), pp. 11–19.
  • C. J. Hill (1828) Über die Integration logarithmisch-rationaler Differentiale. J. Reine Angew. Math. 3, pp. 101–159.
  • 8: Bibliography G
  • D. Gómez-Ullate and R. Milson (2014) Rational extensions of the quantum harmonic oscillator and exceptional Hermite polynomials. J. Phys. A 47 (1), pp. 015203, 26 pp..
  • R. G. Gordon (1970) Constructing wavefunctions for nonlocal potentials. J. Chem. Phys. 52, pp. 6211–6217.
  • 9: Bibliography
  • H. Airault, H. P. McKean, and J. Moser (1977) Rational and elliptic solutions of the Korteweg-de Vries equation and a related many-body problem. Comm. Pure Appl. Math. 30 (1), pp. 95–148.
  • H. Airault (1979) Rational solutions of Painlevé equations. Stud. Appl. Math. 61 (1), pp. 31–53.
  • W. A. Al-Salam and M. E. H. Ismail (1994) A q -beta integral on the unit circle and some biorthogonal rational functions. Proc. Amer. Math. Soc. 121 (2), pp. 553–561.
  • H. H. Aly, H. J. W. Müller-Kirsten, and N. Vahedi-Faridi (1975) Scattering by singular potentials with a perturbation – Theoretical introduction to Mathieu functions. J. Mathematical Phys. 16, pp. 961–970.
  • H. M. Antia (1993) Rational function approximations for Fermi-Dirac integrals. The Astrophysical Journal Supplement Series 84, pp. 101–108.
  • 10: Bibliography B
  • E. Bank and M. E. H. Ismail (1985) The attractive Coulomb potential polynomials. Constr. Approx. 1 (2), pp. 103–119.
  • M. V. Berry (1966) Uniform approximation for potential scattering involving a rainbow. Proc. Phys. Soc. 89 (3), pp. 479–490.
  • A. Bhattacharjie and E. C. G. Sudarshan (1962) A class of solvable potentials. Nuovo Cimento (10) 25, pp. 864–879.
  • J. M. Blair, C. A. Edwards, and J. H. Johnson (1976) Rational Chebyshev approximations for the inverse of the error function. Math. Comp. 30 (136), pp. 827–830.
  • J. C. Bronski, L. D. Carr, B. Deconinck, J. N. Kutz, and K. Promislow (2001) Stability of repulsive Bose-Einstein condensates in a periodic potential. Phys. Rev. E (3) 63 (036612), pp. 1–11.