About the Project

logarithmic integral

AdvancedHelp

(0.009 seconds)

11—20 of 218 matching pages

11: 22.14 Integrals
12: 6.15 Sums
6.15.2 n = 1 si ( π n ) n = 1 2 π ( ln π 1 ) ,
6.15.3 n = 1 ( 1 ) n Ci ( 2 π n ) = 1 ln 2 1 2 γ ,
6.15.4 n = 1 ( 1 ) n si ( 2 π n ) n = π ( 3 2 ln 2 1 ) .
13: 6.9 Continued Fraction
6.9.1 E 1 ( z ) = e z z + 1 1 + 1 z + 2 1 + 2 z + 3 1 + 3 z + , | ph z | < π .
14: 6.4 Analytic Continuation
6.4.1 E 1 ( z ) = Ein ( z ) Ln z γ ;
6.4.2 E 1 ( z e 2 m π i ) = E 1 ( z ) 2 m π i , m ,
6.4.5 Chi ( z e ± π i ) = ± π i + Chi ( z ) ,
6.4.6 f ( z e ± π i ) = π e i z f ( z ) ,
15: 5.9 Integral Representations
Binet’s Formula
5.9.10_2 Ln Γ ( z ) = ( z 1 2 ) ln z z + 1 2 ln ( 2 π ) + 0 e z t ( 1 e t 1 1 t + 1 2 ) d t t ,
5.9.13 ψ ( z ) = ln z + 0 ( 1 t 1 1 e t ) e t z d t ,
5.9.15 ψ ( z ) = ln z 1 2 z 2 0 t d t ( t 2 + z 2 ) ( e 2 π t 1 ) .
5.9.19 Γ ( n ) ( z ) = 0 ( ln t ) n e t t z 1 d t , n 0 , z > 0 .
16: 4.40 Integrals
4.40.4 csch x d x = ln ( tanh ( 1 2 x ) ) , 0 < x < .
4.40.6 coth x d x = ln ( sinh x ) , 0 < x < .
4.40.13 arctanh x d x = x arctanh x + 1 2 ln ( 1 x 2 ) , 1 < x < 1 ,
4.40.16 arccoth x d x = x arccoth x + 1 2 ln ( x 2 1 ) , 1 < x < .
17: 8.19 Generalized Exponential Integral
8.19.5 E 0 ( z ) = z 1 e z , z 0 ,
8.19.12 p E p + 1 ( z ) + z E p ( z ) = e z .
8.19.24 0 e a t E n ( t ) d t = ( 1 ) n 1 a n ( ln ( 1 + a ) + k = 1 n 1 ( 1 ) k a k k ) , n = 1 , 2 , , a > 1 ,
18: 7.7 Integral Representations
7.7.9 0 x erf t d t = x erf x + 1 π ( e x 2 1 ) .
7.7.10 f ( z ) = 1 π 2 0 e π z 2 t / 2 t ( t 2 + 1 ) d t , | ph z | 1 4 π ,
7.7.11 g ( z ) = 1 π 2 0 t e π z 2 t / 2 t 2 + 1 d t , | ph z | 1 4 π ,
7.7.15 0 e a t cos ( t 2 ) d t = π 2 f ( a 2 π ) , a > 0 ,
7.7.16 0 e a t sin ( t 2 ) d t = π 2 g ( a 2 π ) , a > 0 .
19: 7.14 Integrals
7.14.3 0 e a t erf b t d t = 1 a b a + b , a > 0 , b > 0 ,
7.14.5 0 e a t C ( t ) d t = 1 a f ( a π ) , a > 0 ,
7.14.6 0 e a t S ( t ) d t = 1 a g ( a π ) , a > 0 ,
7.14.7 0 e a t C ( 2 t π ) d t = ( a 2 + 1 + a ) 1 2 2 a a 2 + 1 , a > 0 ,
7.14.8 0 e a t S ( 2 t π ) d t = ( a 2 + 1 a ) 1 2 2 a a 2 + 1 , a > 0 .
20: 6.7 Integral Representations
6.7.1 0 e a t t + b d t = 0 e i a t t + i b d t = e a b E 1 ( a b ) , a > 0 , b > 0 ,
6.7.2 e x 0 α e x t 1 t d t = Ei ( x ) Ei ( ( 1 α ) x ) , 0 α < 1 , x > 0 .
6.7.9 si ( z ) = 0 π / 2 e z cos t cos ( z sin t ) d t ,
6.7.10 Ein ( z ) Cin ( z ) = 0 π / 2 e z cos t sin ( z sin t ) d t ,
6.7.13 f ( z ) = 0 sin t t + z d t = 0 e z t t 2 + 1 d t ,