About the Project

in modified Bessel functions

AdvancedHelp

(0.034 seconds)

21—30 of 111 matching pages

21: 10.34 Analytic Continuation
§10.34 Analytic Continuation
When m , …
10.34.2 K ν ( z e m π i ) = e m ν π i K ν ( z ) π i sin ( m ν π ) csc ( ν π ) I ν ( z ) .
If ν = n ( ) , then limiting values are taken in (10.34.2) and (10.34.4):
10.34.5 K n ( z e m π i ) = ( 1 ) m n K n ( z ) + ( 1 ) n ( m 1 ) 1 m π i I n ( z ) ,
22: 10.28 Wronskians and Cross-Products
§10.28 Wronskians and Cross-Products
10.28.1 𝒲 { I ν ( z ) , I ν ( z ) } = I ν ( z ) I ν 1 ( z ) I ν + 1 ( z ) I ν ( z ) = 2 sin ( ν π ) / ( π z ) ,
10.28.2 𝒲 { K ν ( z ) , I ν ( z ) } = I ν ( z ) K ν + 1 ( z ) + I ν + 1 ( z ) K ν ( z ) = 1 / z .
23: 10.41 Asymptotic Expansions for Large Order
24: 2.8 Differential Equations with a Parameter
For other examples of uniform asymptotic approximations and expansions of special functions in terms of Bessel functions or modified Bessel functions of fixed order see §§13.8(iii), 13.21(i), 13.21(iv), 14.15(i), 14.15(iii), 14.20(vii), 15.12(iii), 18.15(i), 18.15(iv), 18.24, 33.20(iv). … For further examples of uniform asymptotic approximations in terms of Bessel functions or modified Bessel functions of variable order see §§13.21(ii), 14.15(ii), 14.15(iv), 14.20(viii), 30.9(i), 30.9(ii). …
25: 10.29 Recurrence Relations and Derivatives
§10.29(i) Recurrence Relations
With 𝒵 ν ( z ) defined as in §10.25(ii), …
I 0 ( z ) = I 1 ( z ) ,
For results on modified quotients of the form z 𝒵 ν ± 1 ( z ) / 𝒵 ν ( z ) see Onoe (1955) and Onoe (1956).
§10.29(ii) Derivatives
26: 10.43 Integrals
10.43.4 0 x I 0 ( t ) 1 t d t = 1 2 k = 1 ( 1 ) k 1 ψ ( k + 1 ) ψ ( 1 ) k ! ( 1 2 x ) k I k ( x ) = 2 x k = 0 ( 1 ) k ( 2 k + 3 ) ( ψ ( k + 2 ) ψ ( 1 ) ) I 2 k + 3 ( x ) .
10.43.5 x K 0 ( t ) t d t = 1 2 ( ln ( 1 2 x ) + γ ) 2 + π 2 24 k = 1 ( ψ ( k + 1 ) + 1 2 k ln ( 1 2 x ) ) ( 1 2 x ) 2 k 2 k ( k ! ) 2 ,
27: 10.56 Generating Functions
10.56.3 cosh z 2 + 2 i z t z = cosh z z + n = 1 ( i t ) n n ! 𝗂 n 1 ( 1 ) ( z ) ,
10.56.4 sinh z 2 + 2 i z t z = sinh z z + n = 1 ( i t ) n n ! 𝗂 n 1 ( 2 ) ( z ) ,
10.56.5 exp ( z 2 + 2 i z t ) z = e z z + 2 π n = 1 ( i t ) n n ! 𝗄 n 1 ( z ) .
28: 18.34 Bessel Polynomials
§18.34 Bessel Polynomials
§18.34(i) Definitions and Recurrence Relation
where 𝗄 n is a modified spherical Bessel function (10.49.9), and … expressed in terms of Romanovski–Bessel polynomials, Laguerre polynomials or Whittaker functions, we have … For uniform asymptotic expansions of y n ( x ; a ) as n in terms of Airy functions9.2) see Wong and Zhang (1997) and Dunster (2001c). …
29: 11.4 Basic Properties
11.4.2 𝐋 n + 1 2 ( z ) = I n 1 2 ( z ) ( 2 π z ) 1 2 m = 0 n ( 1 ) m ( 2 m ) !  2 2 m m ! ( n m ) ! ( 1 2 z ) n 2 m ,
§11.4(iv) Expansions in Series of Bessel Functions
30: 10.66 Expansions in Series of Bessel Functions
10.66.1 ber ν x + i bei ν x = k = 0 e ( 3 ν + k ) π i / 4 x k J ν + k ( x ) 2 k / 2 k ! = k = 0 e ( 3 ν + 3 k ) π i / 4 x k I ν + k ( x ) 2 k / 2 k ! .