About the Project

asymptotic and order symbols

AdvancedHelp

(0.003 seconds)

1—10 of 41 matching pages

1: 2.1 Definitions and Elementary Properties
§2.1(i) Asymptotic and Order Symbols
As x c in 𝐗
§2.1(ii) Integration and Differentiation
2.1.12 f ( x ) d x { a constant, ν < 1 , ln x , ν = 1 , x ν + 1 / ( ν + 1 ) , ν > 1 .
2: 13.9 Zeros
13.9.16 a = n 2 π z n 2 z π 2 + 1 2 b + 1 4 + z 2 ( 1 3 4 π 2 ) + z ( b 1 ) 2 + 1 4 4 π z n + O ( 1 n ) ,
3: 18.15 Asymptotic Approximations
18.15.22 L n ( α ) ( ν x ) = ( 1 ) n e 1 2 ν x 2 α 1 2 x 1 2 α + 1 4 ( ζ x 1 ) 1 4 ( Ai ( ν 2 3 ζ ) ν 1 3 m = 0 M 1 E m ( ζ ) ν 2 m + Ai ( ν 2 3 ζ ) ν 5 3 m = 0 M 1 F m ( ζ ) ν 2 m + envAi ( ν 2 3 ζ ) O ( 1 ν 2 M 2 3 ) ) ,
4: Errata
  • Equation (13.9.16)

    Originally was expressed in term of asymptotic symbol . As a consequence of the use of the O order symbol on the right-hand side, was replaced by = .

  • Equation (18.15.22)

    Because of the use of the O order symbol on the right-hand side, the asymptotic expansion for the generalized Laguerre polynomial L n ( α ) ( ν x ) was rewritten as an equality.

  • 5: 11.11 Asymptotic Expansions of Anger–Weber Functions
    11.11.11 𝐀 ν ( λ ν ) ( 2 π ν ) 1 / 2 e ν μ k = 0 ( 1 2 ) k b k ( λ ) ν k , ν , | ph ν | π 2 δ ,
    6: Bibliography K
  • M. Kodama (2008) Algorithm 877: A subroutine package for cylindrical functions of complex order and nonnegative argument. ACM Trans. Math. Software 34 (4), pp. Art. 22, 21.
  • M. Kodama (2011) Algorithm 912: a module for calculating cylindrical functions of complex order and complex argument. ACM Trans. Math. Software 37 (4), pp. Art. 47, 25.
  • S. Koumandos and M. Lamprecht (2010) Some completely monotonic functions of positive order. Math. Comp. 79 (271), pp. 1697–1707.
  • J. J. Kovacic (1986) An algorithm for solving second order linear homogeneous differential equations. J. Symbolic Comput. 2 (1), pp. 3–43.
  • Y. A. Kravtsov (1964) Asymptotic solution of Maxwell’s equations near caustics. Izv. Vuz. Radiofiz. 7, pp. 1049–1056.
  • 7: 11.9 Lommel Functions
    11.9.1 d 2 w d z 2 + 1 z d w d z + ( 1 ν 2 z 2 ) w = z μ 1
    11.9.4 a k ( μ , ν ) = m = 1 k ( ( μ + 2 m 1 ) 2 ν 2 ) = 4 k ( μ ν + 1 2 ) k ( μ + ν + 1 2 ) k , k = 0 , 1 , 2 , .
    §11.9(iii) Asymptotic Expansion
    11.9.9 S μ , ν ( z ) z μ 1 k = 0 ( 1 ) k a k ( μ , ν ) z 2 k , z , | ph z | π δ ( < π ) .
    For uniform asymptotic expansions, for large ν and fixed μ = 1 , 0 , 1 , 2 , , of solutions of the inhomogeneous modified Bessel differential equation that corresponds to (11.9.1) see Olver (1997b, pp. 388–390). …
    8: Bibliography W
  • Z. Wang and R. Wong (2003) Asymptotic expansions for second-order linear difference equations with a turning point. Numer. Math. 94 (1), pp. 147–194.
  • J. K. G. Watson (1999) Asymptotic approximations for certain 6 - j and 9 - j symbols. J. Phys. A 32 (39), pp. 6901–6902.
  • R. Wong and H. Li (1992a) Asymptotic expansions for second-order linear difference equations. II. Stud. Appl. Math. 87 (4), pp. 289–324.
  • R. Wong and H. Li (1992b) Asymptotic expansions for second-order linear difference equations. J. Comput. Appl. Math. 41 (1-2), pp. 65–94.
  • R. Wong and H. Y. Zhang (2007) Asymptotic solutions of a fourth order differential equation. Stud. Appl. Math. 118 (2), pp. 133–152.
  • 9: 14.8 Behavior at Singularities
    14.8.1 𝖯 ν μ ( x ) 1 Γ ( 1 μ ) ( 2 1 x ) μ / 2 , μ 1 , 2 , 3 , ,
    14.8.2 𝖯 ν m ( x ) ( 1 ) m ( ν m + 1 ) 2 m m ! ( 1 x 2 ) m / 2 , m = 1 , 2 , 3 , , ν m 1 , m 2 , , m ,
    14.8.4 𝖰 ν μ ( x ) 1 2 cos ( μ π ) Γ ( μ ) ( 2 1 x ) μ / 2 , μ 1 2 , 3 2 , 5 2 , ,
    14.8.7 P ν μ ( x ) 1 Γ ( 1 μ ) ( 2 x 1 ) μ / 2 , μ 1 , 2 , 3 , ,
    14.8.11 𝑸 ν μ ( x ) Γ ( μ ) 2 Γ ( ν + μ + 1 ) ( 2 x 1 ) μ / 2 , μ > 0 , ν + μ 1 , 2 , 3 , .
    10: Bibliography T
  • N. M. Temme (1979b) The asymptotic expansion of the incomplete gamma functions. SIAM J. Math. Anal. 10 (4), pp. 757–766.
  • N. M. Temme (1986) Laguerre polynomials: Asymptotics for large degree. Technical report Technical Report AM-R8610, CWI, Amsterdam, The Netherlands.
  • N.M. Temme and E.J.M. Veling (2022) Asymptotic expansions of Kummer hypergeometric functions with three asymptotic parameters a, b and z. Indagationes Mathematicae.
  • E. C. Titchmarsh (1946) Eigenfunction Expansions Associated with Second-Order Differential Equations. Clarendon Press, Oxford.
  • S. A. Tumarkin (1959) Asymptotic solution of a linear nonhomogeneous second order differential equation with a transition point and its application to the computations of toroidal shells and propeller blades. J. Appl. Math. Mech. 23, pp. 1549–1565.