About the Project

Visit (-- welcom --) pharmacy buy ratio over counterpart. ident stratege ratio diploma 20mg mills price prescription online

AdvancedHelp

The term"pharmaci" was not found.Possible alternative term: "pharmaceut".

(0.006 seconds)

1—10 of 619 matching pages

1: 12.19 Tables
  • Abramowitz and Stegun (1964, Chapter 19) includes U ( a , x ) and V ( a , x ) for ± a = 0 ( .1 ) 1 ( .5 ) 5 , x = 0 ( .1 ) 5 , 5S; W ( a , ± x ) for ± a = 0 ( .1 ) 1 ( 1 ) 5 , x = 0 ( .1 ) 5 , 4-5D or 4-5S.

  • Kireyeva and Karpov (1961) includes D p ( x ( 1 + i ) ) for ± x = 0 ( .1 ) 5 , p = 0 ( .1 ) 2 , and ± x = 5 ( .01 ) 10 , p = 0 ( .5 ) 2 , 7D.

  • Karpov and Čistova (1964) includes D p ( x ) for p = 2 ( .1 ) 0 , ± x = 0 ( .01 ) 5 ; p = 2 ( .05 ) 0 , ± x = 5 ( .01 ) 10 , 6D.

  • Murzewski and Sowa (1972) includes D n ( x ) ( = U ( n 1 2 , x ) ) for n = 1 ( 1 ) 20 , x = 0 ( .05 ) 3 , 7S.

  • Zhang and Jin (1996, pp. 455–473) includes U ( ± n 1 2 , x ) , V ( ± n 1 2 , x ) , U ( ± ν 1 2 , x ) , V ( ± ν 1 2 , x ) , and derivatives, ν = n + 1 2 , n = 0 ( 1 ) 10 ( 10 ) 30 , x = 0.5 , 1 , 5 , 10 , 30 , 50 , 8S; W ( a , ± x ) , W ( a , ± x ) , and derivatives, a = h ( 1 ) 5 + h , x = 0.5 , 1 and a = h ( 1 ) 5 + h , x = 5 , h = 0 , 0.5 , 8S. Also, first zeros of U ( a , x ) , V ( a , x ) , and of derivatives, a = 6 ( .5 ) 1 , 6D; first three zeros of W ( a , x ) and of derivative, a = 0 ( .5 ) 4 , 6D; first three zeros of W ( a , ± x ) and of derivative, a = 0.5 ( .5 ) 5.5 , 6D; real and imaginary parts of U ( a , z ) , a = 1.5 ( 1 ) 1.5 , z = x + i y , x = 0.5 , 1 , 5 , 10 , y = 0 ( .5 ) 10 , 8S.

  • 2: 4.16 Elementary Properties
    Table 4.16.2: Trigonometric functions: quarter periods and change of sign.
    x θ 1 2 π ± θ π ± θ 3 2 π ± θ 2 π ± θ
    sin x sin θ cos θ sin θ cos θ ± sin θ
    cos x cos θ sin θ cos θ ± sin θ cos θ
    tan x tan θ cot θ ± tan θ cot θ ± tan θ
    cot x cot θ tan θ ± cot θ tan θ ± cot θ
    3: 28.25 Asymptotic Expansions for Large z
    28.25.1 M ν ( 3 , 4 ) ( z , h ) e ± i ( 2 h cosh z ( 1 2 ν + 1 4 ) π ) ( π h ( cosh z + 1 ) ) 1 2 m = 0 D m ± ( 4 i h ( cosh z + 1 ) ) m ,
    D 1 ± = 0 ,
    D 0 ± = 1 ,
    28.25.3 ( m + 1 ) D m + 1 ± + ( ( m + 1 2 ) 2 ± ( m + 1 4 ) 8 i h + 2 h 2 a ) D m ± ± ( m 1 2 ) ( 8 i h m ) D m 1 ± = 0 , m 0 .
    28.25.4 z + , π + δ ph h + z 2 π δ ,
    4: 36.7 Zeros
    x m , n ± = 2 y m ( 2 n + 1 2 + ( 1 ) m 1 2 ± 1 4 ) π , m = 1 , 2 , 3 , , n = 0 , ± 1 , ± 2 , .
    Table 36.7.1: Zeros of cusp diffraction catastrophe to 5D. …
    Zeros { x y } inside, and zeros [ x y ] outside, the cusp x 2 = 8 27 | y | 3 .
    { ± 1.41101 5.55470 } { ± 2.36094 5.52321 } [ ± 4.42707 3.05791 ]
    { ± 0.38488 8.31916 } { ± 2.71193 8.22315 } { ± 3.49286 8.20326 } { ± 5.96669 7.85723 } { ± 6.79538 7.80456 } [ ± 9.17308 5.55831 ]
    x n = ± ( 8 27 ) 1 / 2 | y n | 3 / 2 ( 1 + ξ n ) ,
    36.7.4 z n = ± 3 ( 1 4 π ( 2 n 1 2 ) ) 1 / 3 = 3.48734 ( n 1 4 ) 1 / 3 , n = 1 , 2 , 3 , .
    5: 6.4 Analytic Continuation
    6.4.4 Ci ( z e ± π i ) = ± π i + Ci ( z ) ,
    6.4.5 Chi ( z e ± π i ) = ± π i + Chi ( z ) ,
    6.4.6 f ( z e ± π i ) = π e i z f ( z ) ,
    6.4.7 g ( z e ± π i ) = π i e i z + g ( z ) .
    6: 33.8 Continued Fractions
    33.8.2 H ± H ± = c ± i ρ a b 2 ( ρ η ± i ) + ( a + 1 ) ( b + 1 ) 2 ( ρ η ± 2 i ) + ,
    a = 1 + ± i η ,
    b = ± i η ,
    c = ± i ( 1 ( η / ρ ) ) .
    If we denote u = F / F and p + i q = H + / H + , then …
    7: 4.24 Inverse Trigonometric Functions: Further Properties
    4.24.4 arctan z = ± π 2 1 z + 1 3 z 3 1 5 z 5 + , z 0 , | z | 1 .
    4.24.13 Arcsin u ± Arcsin v = Arcsin ( u ( 1 v 2 ) 1 / 2 ± v ( 1 u 2 ) 1 / 2 ) ,
    4.24.14 Arccos u ± Arccos v = Arccos ( u v ( ( 1 u 2 ) ( 1 v 2 ) ) 1 / 2 ) ,
    4.24.15 Arctan u ± Arctan v = Arctan ( u ± v 1 u v ) ,
    4.24.17 Arctan u ± Arccot v = Arctan ( u v ± 1 v u ) = Arccot ( v u u v ± 1 ) .
    8: 10.34 Analytic Continuation
    10.34.1 I ν ( z e m π i ) = e m ν π i I ν ( z ) ,
    10.34.2 K ν ( z e m π i ) = e m ν π i K ν ( z ) π i sin ( m ν π ) csc ( ν π ) I ν ( z ) .
    10.34.3 I ν ( z e m π i ) = ( i / π ) ( ± e m ν π i K ν ( z e ± π i ) e ( m 1 ) ν π i K ν ( z ) ) ,
    10.34.4 K ν ( z e m π i ) = csc ( ν π ) ( ± sin ( m ν π ) K ν ( z e ± π i ) sin ( ( m 1 ) ν π ) K ν ( z ) ) .
    10.34.6 K n ( z e m π i ) = ± ( 1 ) n ( m 1 ) m K n ( z e ± π i ) ( 1 ) n m ( m 1 ) K n ( z ) .
    9: 4.4 Special Values and Limits
    4.4.2 ln ( 1 ± i 0 ) = ± π i ,
    4.4.3 ln ( ± i ) = ± 1 2 π i .
    4.4.6 e ± π i / 2 = ± i ,
    4.4.8 e ± π i / 3 = 1 2 ± i 3 2 ,
    10: 33.2 Definitions and Basic Properties
    §33.2(ii) Regular Solution F ( η , ρ )
    §33.2(iii) Irregular Solutions G ( η , ρ ) , H ± ( η , ρ )
    The functions H ± ( η , ρ ) are defined by … As in the case of F ( η , ρ ) , the solutions H ± ( η , ρ ) and G ( η , ρ ) are analytic functions of ρ when 0 < ρ < . Also, e i σ ( η ) H ± ( η , ρ ) are analytic functions of η when < η < . …