About the Project

Visit (-- welcom --) pharmacy buy averag over counterpart. ident stratege averag 50-100mg mills price prescription online r

AdvancedHelp

(0.008 seconds)

11—20 of 512 matching pages

11: 26.18 Counting Techniques
β–ΊThen the number of elements in the set S βˆ– ( A 1 A 2 β‹― A n ) is β–Ί
26.18.1 | S βˆ– ( A 1 A 2 β‹― A n ) | = | S | + t = 1 n ( 1 ) t ⁒ 1 j 1 < j 2 < β‹― < j t n | A j 1 A j 2 β‹― A j t | .
β–Ί
26.18.3 n ! + t = 1 n ( 1 ) t ⁒ r t ⁑ ( B ) ⁒ ( n t ) ! .
12: 11.8 Analogs to Kelvin Functions
§11.8 Analogs to Kelvin Functions
β–ΊFor properties of Struve functions of argument x ⁒ e ± 3 ⁒ Ο€ ⁒ i / 4 see McLachlan and Meyers (1936).
13: 4.16 Elementary Properties
β–Ί
Table 4.16.2: Trigonometric functions: quarter periods and change of sign.
β–Ί β–Ίβ–Ίβ–Ίβ–Ίβ–Ίβ–Ί
x ΞΈ 1 2 ⁒ Ο€ ± ΞΈ Ο€ ± ΞΈ 3 2 ⁒ Ο€ ± ΞΈ 2 ⁒ Ο€ ± ΞΈ
sin ⁑ x sin ⁑ ΞΈ cos ⁑ ΞΈ βˆ“ sin ⁑ ΞΈ cos ⁑ ΞΈ ± sin ⁑ ΞΈ
cos ⁑ x cos ⁑ ΞΈ βˆ“ sin ⁑ ΞΈ cos ⁑ ΞΈ ± sin ⁑ ΞΈ cos ⁑ ΞΈ
tan ⁑ x tan ⁑ ΞΈ βˆ“ cot ⁑ ΞΈ ± tan ⁑ ΞΈ βˆ“ cot ⁑ ΞΈ ± tan ⁑ ΞΈ
cot ⁑ x cot ⁑ ΞΈ βˆ“ tan ⁑ ΞΈ ± cot ⁑ ΞΈ βˆ“ tan ⁑ ΞΈ ± cot ⁑ ΞΈ
β–Ί
14: 10.17 Asymptotic Expansions for Large Argument
β–Ί
10.17.13 H Ξ½ ( 1 ) ⁑ ( z ) H Ξ½ ( 2 ) ⁑ ( z ) } = ( 2 Ο€ ⁒ z ) 1 2 ⁒ e ± i ⁒ Ο‰ ⁒ ( k = 0 β„“ 1 ( ± i ) k ⁒ a k ⁑ ( Ξ½ ) z k + R β„“ ± ⁑ ( Ξ½ , z ) ) , β„“ = 1 , 2 , .
β–Ί
10.17.14 | R β„“ ± ⁑ ( Ξ½ , z ) | 2 ⁒ | a β„“ ⁑ ( Ξ½ ) | ⁒ 𝒱 z , ± i ⁒ ⁑ ( t β„“ ) ⁒ exp ⁑ ( | Ξ½ 2 1 4 | ⁒ 𝒱 z , ± i ⁒ ⁑ ( t 1 ) ) ,
β–Ί
10.17.17 R β„“ ± ⁑ ( Ξ½ , z ) = ( 1 ) β„“ ⁒ 2 ⁒ cos ⁑ ( Ξ½ ⁒ Ο€ ) ⁒ ( k = 0 m 1 ( ± i ) k ⁒ a k ⁑ ( Ξ½ ) z k ⁒ G β„“ k ⁑ ( βˆ“ 2 ⁒ i ⁒ z ) + R m , β„“ ± ⁑ ( Ξ½ , z ) ) ,
β–Ί
10.17.18 R m , β„“ ± ⁑ ( Ξ½ , z ) = O ⁑ ( e 2 ⁒ | z | ⁒ z m ) , | ph ⁑ ( z ⁒ e βˆ“ 1 2 ⁒ Ο€ ⁒ i ) | Ο€ .
15: 28.25 Asymptotic Expansions for Large ⁑ z
β–Ί
28.25.1 M Ξ½ ( 3 , 4 ) ⁑ ( z , h ) e ± i ⁒ ( 2 ⁒ h ⁒ cosh ⁑ z ( 1 2 ⁒ Ξ½ + 1 4 ) ⁒ Ο€ ) ( Ο€ ⁒ h ⁒ ( cosh ⁑ z + 1 ) ) 1 2 ⁒ m = 0 D m ± ( βˆ“ 4 ⁒ i ⁒ h ⁒ ( cosh ⁑ z + 1 ) ) m ,
β–Ί
D 1 ± = 0 ,
β–Ί
D 0 ± = 1 ,
β–Ί
28.25.3 ( m + 1 ) ⁒ D m + 1 ± + ( ( m + 1 2 ) 2 ± ( m + 1 4 ) ⁒ 8 ⁒ i ⁒ h + 2 ⁒ h 2 a ) ⁒ D m ± ± ( m 1 2 ) ⁒ ( 8 ⁒ i ⁒ h ⁒ m ) ⁒ D m 1 ± = 0 , m 0 .
16: 4.13 Lambert W -Function
β–ΊThe decreasing solution can be identified as W ± 1 ⁑ ( x βˆ“ 0 ⁒ i ) . … W 0 ⁑ ( z ) is a single-valued analytic function on β„‚ βˆ– ( , e 1 ] , real-valued when z > e 1 , and has a square root branch point at z = e 1 . …The other branches W k ⁑ ( z ) are single-valued analytic functions on β„‚ βˆ– ( , 0 ] , have a logarithmic branch point at z = 0 , and, in the case k = ± 1 , have a square root branch point at z = e 1 βˆ“ 0 ⁒ i respectively. … β–Ίand has several advantages over the Lambert W -function (see Lawrence et al. (2012)), and the tree T -function T ⁑ ( z ) = W ⁑ ( z ) , which is a solution of … β–Ίwhere t 0 for W 0 , t 0 for W ± 1 on the relevant branch cuts, …
17: 22.9 Cyclic Identities
§22.9 Cyclic Identities
β–Ί
§22.9(ii) Typical Identities of Rank 2
β–Ί β–Ί
§22.9(iii) Typical Identities of Rank 3
β–Ί
18: 6.4 Analytic Continuation
β–Ί
6.4.3 E 1 ⁑ ( z ⁒ e ± Ο€ ⁒ i ) = Ein ⁑ ( z ) ln ⁑ z Ξ³ βˆ“ Ο€ ⁒ i , | ph ⁑ z | Ο€ .
β–Ί
6.4.4 Ci ⁑ ( z ⁒ e ± Ο€ ⁒ i ) = ± Ο€ ⁒ i + Ci ⁑ ( z ) ,
β–Ί
6.4.5 Chi ⁑ ( z ⁒ e ± Ο€ ⁒ i ) = ± Ο€ ⁒ i + Chi ⁑ ( z ) ,
β–Ί
6.4.6 f ⁑ ( z ⁒ e ± Ο€ ⁒ i ) = Ο€ ⁒ e βˆ“ i ⁒ z f ⁑ ( z ) ,
β–Ί
6.4.7 g ⁑ ( z ⁒ e ± Ο€ ⁒ i ) = βˆ“ Ο€ ⁒ i ⁒ e βˆ“ i ⁒ z + g ⁑ ( z ) .
19: 26.15 Permutations: Matrix Notation
β–Ίwhere the sum is over 1 g < k n and n h > β„“ 1 . … β–ΊDefine r 0 ⁑ ( B ) = 1 . …The rook polynomial is the generating function for r j ⁑ ( B ) : … β–ΊFor ( j , k ) B , B βˆ– [ j , k ] denotes B after removal of all elements of the form ( j , t ) or ( t , k ) , t = 1 , 2 , , n . B βˆ– ( j , k ) denotes B with the element ( j , k ) removed. …
20: 19.16 Definitions
β–ΊIn (19.16.1)–(19.16.2_5), x , y , z β„‚ βˆ– ( , 0 ] except that one or more of x , y , z may be 0 when the corresponding integral converges. … β–Ί
§19.16(ii) R a ⁑ ( 𝐛 ; 𝐳 )
β–ΊThe R -function is often used to make a unified statement of a property of several elliptic integrals. Before 1969 R a ⁑ ( 𝐛 ; 𝐳 ) was denoted by R ⁑ ( a ; 𝐛 ; 𝐳 ) . … β–ΊFor generalizations and further information, especially representation of the R -function as a Dirichlet average, see Carlson (1977b). …