About the Project

Stieltjes fraction (S-fraction)

AdvancedHelp

(0.002 seconds)

11—20 of 129 matching pages

11: 18.29 Asymptotic Approximations for q -Hahn and Askey–Wilson Classes
18.29.2 Q n ( z ; a , b , c , d q ) z n ( a z 1 , b z 1 , c z 1 , d z 1 ; q ) ( z 2 , b c , b d , c d ; q ) , n ; z , a , b , c , d , q fixed.
For a uniform asymptotic expansion of the Stieltjes–Wigert polynomials, see Wang and Wong (2006). …
12: 1.4 Calculus of One Variable
Stieltjes, Lebesgue, and Lebesgue–Stieltjes integrals
See Riesz and Sz.-Nagy (1990, Ch. 3). …
13: Bibliography
  • A. M. Al-Rashed and N. Zaheer (1985) Zeros of Stieltjes and Van Vleck polynomials and applications. J. Math. Anal. Appl. 110 (2), pp. 327–339.
  • M. Alam (1979) Zeros of Stieltjes and Van Vleck polynomials. Trans. Amer. Math. Soc. 252, pp. 197–204.
  • R. Askey and M. E. H. Ismail (1984) Recurrence relations, continued fractions, and orthogonal polynomials. Mem. Amer. Math. Soc. 49 (300), pp. iv+108.
  • 14: 1.14 Integral Transforms
    §1.14(vi) Stieltjes Transform
    The Stieltjes transform of a real-valued function f ( t ) is defined by … …
    Inversion
    Laplace Transform
    15: Bibliography H
  • P. Henrici (1977) Applied and Computational Complex Analysis. Vol. 2: Special Functions—Integral Transforms—Asymptotics—Continued Fractions. Wiley-Interscience [John Wiley & Sons], New York.
  • T. H. Hildebrandt (1938) Definitions of Stieltjes Integrals of the Riemann Type. Amer. Math. Monthly 45 (5), pp. 265–278.
  • 16: 6.9 Continued Fraction
    §6.9 Continued Fraction
    17: 18.13 Continued Fractions
    §18.13 Continued Fractions
    Chebyshev
    Legendre
    Laguerre
    Hermite
    18: Bibliography M
  • J. P. McClure and R. Wong (1978) Explicit error terms for asymptotic expansions of Stieltjes transforms. J. Inst. Math. Appl. 22 (2), pp. 129–145.
  • J. P. McClure and R. Wong (1979) Exact remainders for asymptotic expansions of fractional integrals. J. Inst. Math. Appl. 24 (2), pp. 139–147.
  • K. S. Miller and B. Ross (1993) An Introduction to the Fractional Calculus and Fractional Differential Equations. A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York.
  • C. Mortici (2011a) A new Stirling series as continued fraction. Numer. Algorithms 56 (1), pp. 17–26.
  • C. Mortici (2013a) A continued fraction approximation of the gamma function. J. Math. Anal. Appl. 402 (2), pp. 405–410.
  • 19: 18.2 General Orthogonal Polynomials
    More generally than (18.2.1)–(18.2.3), w ( x ) d x may be replaced in (18.2.1) by d μ ( x ) , where the measure μ is the Lebesgue–Stieltjes measure μ α corresponding to a bounded nondecreasing function α on the closure of ( a , b ) with an infinite number of points of increase, and such that a b | x | n d μ ( x ) < for all n . …
    §18.2(x) Orthogonal Polynomials and Continued Fractions
    Using the terminology of §1.12(ii), the n -th approximant of the continued fraction
    20: 13.5 Continued Fractions
    §13.5 Continued Fractions
    13.5.1 M ( a , b , z ) M ( a + 1 , b + 1 , z ) = 1 + u 1 z 1 + u 2 z 1 + ,
    This continued fraction converges to the meromorphic function of z on the left-hand side everywhere in . For more details on how a continued fraction converges to a meromorphic function see Jones and Thron (1980). … This continued fraction converges to the meromorphic function of z on the left-hand side throughout the sector | ph z | < π . …