About the Project

Schur parameters

AdvancedHelp

(0.003 seconds)

1—10 of 386 matching pages

1: 18.33 Polynomials Orthogonal on the Unit Circle
18.33.22 p ( z ) z n p ( z ¯ 1 ) ¯ = k = 0 n c n k ¯ z k .
The Verblunsky coefficients (also called Schur parameters or reflection coefficients) are the coefficients α n in the Szegő recurrence relations
2: Bibliography D
  • J. Demmel and P. Koev (2006) Accurate and efficient evaluation of Schur and Jack functions. Math. Comp. 75 (253), pp. 223–239.
  • T. M. Dunster (1986) Uniform asymptotic expansions for prolate spheroidal functions with large parameters. SIAM J. Math. Anal. 17 (6), pp. 1495–1524.
  • T. M. Dunster (1991) Conical functions with one or both parameters large. Proc. Roy. Soc. Edinburgh Sect. A 119 (3-4), pp. 311–327.
  • T. M. Dunster (1992) Uniform asymptotic expansions for oblate spheroidal functions I: Positive separation parameter λ . Proc. Roy. Soc. Edinburgh Sect. A 121 (3-4), pp. 303–320.
  • T. M. Dunster (1995) Uniform asymptotic expansions for oblate spheroidal functions II: Negative separation parameter λ . Proc. Roy. Soc. Edinburgh Sect. A 125 (4), pp. 719–737.
  • 3: Bibliography M
  • E. L. Mansfield and H. N. Webster (1998) On one-parameter families of Painlevé III. Stud. Appl. Math. 101 (3), pp. 321–341.
  • N. Michel and M. V. Stoitsov (2008) Fast computation of the Gauss hypergeometric function with all its parameters complex with application to the Pöschl-Teller-Ginocchio potential wave functions. Comput. Phys. Comm. 178 (7), pp. 535–551.
  • S. C. Milne (2002) Infinite families of exact sums of squares formulas, Jacobi elliptic functions, continued fractions, and Schur functions. Ramanujan J. 6 (1), pp. 7–149.
  • H. P. Mulholland and S. Goldstein (1929) The characteristic numbers of the Mathieu equation with purely imaginary parameter. Phil. Mag. Series 7 8 (53), pp. 834–840.
  • J. Murzewski and A. Sowa (1972) Tables of the functions of the parabolic cylinder for negative integer parameters. Zastos. Mat. 13, pp. 261–273.
  • 4: 31.13 Asymptotic Approximations
    §31.13 Asymptotic Approximations
    For asymptotic approximations for the accessory parameter eigenvalues q m , see Fedoryuk (1991) and Slavyanov (1996). …
    5: 31.3 Basic Solutions
    31.3.2 a γ c 1 q c 0 = 0 ,
    31.3.7 ( 1 z ) 1 δ H ( 1 a , ( ( 1 a ) γ + ϵ ) ( 1 δ ) + α β q ; α + 1 δ , β + 1 δ , 2 δ , γ ; 1 z ) .
    6: 29.11 Lamé Wave Equation
    29.11.1 d 2 w d z 2 + ( h ν ( ν + 1 ) k 2 sn 2 ( z , k ) + k 2 ω 2 sn 4 ( z , k ) ) w = 0 ,
    in which ω is another parameter. … For properties of the solutions of (29.11.1) see Arscott (1956, 1959), Arscott (1964b, Chapter X), Erdélyi et al. (1955, §16.14), Fedoryuk (1989), and Müller (1966a, b, c).
    7: 31.14 General Fuchsian Equation
    31.14.1 d 2 w d z 2 + ( j = 1 N γ j z a j ) d w d z + ( j = 1 N q j z a j ) w = 0 , j = 1 N q j = 0 .
    α β = j = 1 N a j q j .
    The three sets of parameters comprise the singularity parameters a j , the exponent parameters α , β , γ j , and the N 2 free accessory parameters q j . With a 1 = 0 and a 2 = 1 the total number of free parameters is 3 N 3 . …
    31.14.3 w ( z ) = ( j = 1 N ( z a j ) γ j / 2 ) W ( z ) ,
    8: 28.17 Stability as x ±
    §28.17 Stability as x ±
    If all solutions of (28.2.1) are bounded when x ± along the real axis, then the corresponding pair of parameters ( a , q ) is called stable. …
    See accompanying text
    Figure 28.17.1: Stability chart for eigenvalues of Mathieu’s equation (28.2.1). Magnify
    9: 31.1 Special Notation
    x , y real variables.
    a complex parameter, | a | 1 , a 1 .
    q , α , β , γ , δ , ϵ , ν complex parameters.
    Sometimes the parameters are suppressed.
    10: 34.8 Approximations for Large Parameters
    §34.8 Approximations for Large Parameters
    For large values of the parameters in the 3 j , 6 j , and 9 j symbols, different asymptotic forms are obtained depending on which parameters are large. … and the symbol o ( 1 ) denotes a quantity that tends to zero as the parameters tend to infinity, as in §2.1(i). …