About the Project

Nörlund polynomials

AdvancedHelp

(0.001 seconds)

1—10 of 13 matching pages

1: 24.16 Generalizations
Nörlund Polynomials
2: 24.2 Definitions and Generating Functions
§24.2(i) Bernoulli Numbers and Polynomials
§24.2(ii) Euler Numbers and Polynomials
( 1 ) n E 2 n > 0 .
Table 24.2.2: Bernoulli and Euler polynomials.
n B n ( x ) E n ( x )
3: Bibliography C
  • L. Carlitz (1960) Note on Nörlund’s polynomial B n ( z ) . Proc. Amer. Math. Soc. 11 (3), pp. 452–455.
  • 4: 24.13 Integrals
    §24.13(i) Bernoulli Polynomials
    24.13.3 x x + ( 1 / 2 ) B n ( t ) d t = E n ( 2 x ) 2 n + 1 ,
    For integrals of the form 0 x B n ( t ) B m ( t ) d t and 0 x B n ( t ) B m ( t ) B k ( t ) d t see Agoh and Dilcher (2011).
    §24.13(ii) Euler Polynomials
    §24.13(iii) Compendia
    5: 24.1 Special Notation
    The notations E n , E n ( x ) , as defined in §24.2(ii), were used in Lucas (1891) and Nörlund (1924). …
    6: 24 Bernoulli and Euler Polynomials
    Chapter 24 Bernoulli and Euler Polynomials
    7: 24.4 Basic Properties
    §24.4(i) Difference Equations
    §24.4(ii) Symmetry
    Next, …
    §24.4(vi) Special Values
    §24.4(vii) Derivatives
    8: 25.6 Integer Arguments
    25.6.6 ζ ( 2 k + 1 ) = ( 1 ) k + 1 ( 2 π ) 2 k + 1 2 ( 2 k + 1 ) ! 0 1 B 2 k + 1 ( t ) cot ( π t ) d t , k = 1 , 2 , 3 , .
    9: 24.5 Recurrence Relations
    §24.5 Recurrence Relations
    24.5.1 k = 0 n 1 ( n k ) B k ( x ) = n x n 1 , n = 2 , 3 , ,
    24.5.2 k = 0 n ( n k ) E k ( x ) + E n ( x ) = 2 x n , n = 1 , 2 , .
    10: 24.14 Sums
    §24.14 Sums
    §24.14(i) Quadratic Recurrence Relations
    24.14.1 k = 0 n ( n k ) B k ( x ) B n k ( y ) = n ( x + y 1 ) B n 1 ( x + y ) ( n 1 ) B n ( x + y ) ,
    24.14.5 k = 0 n ( n k ) E k ( h ) B n k ( x ) = 2 n B n ( 1 2 ( x + h ) ) ,
    For other sums involving Bernoulli and Euler numbers and polynomials see Hansen (1975, pp. 331–347) and Prudnikov et al. (1990, pp. 383–386).