About the Project

Jacobi–Anger expansions

AdvancedHelp

(0.002 seconds)

11—20 of 366 matching pages

11: 20.2 Definitions and Periodic Properties
§20.2(i) Fourier Series
Corresponding expansions for θ j ( z | τ ) , j = 1 , 2 , 3 , 4 , can be found by differentiating (20.2.1)–(20.2.4) with respect to z . … For fixed τ , each θ j ( z | τ ) is an entire function of z with period 2 π ; θ 1 ( z | τ ) is odd in z and the others are even. For fixed z , each of θ 1 ( z | τ ) / sin z , θ 2 ( z | τ ) / cos z , θ 3 ( z | τ ) , and θ 4 ( z | τ ) is an analytic function of τ for τ > 0 , with a natural boundary τ = 0 , and correspondingly, an analytic function of q for | q | < 1 with a natural boundary | q | = 1 . … For m , n , the z -zeros of θ j ( z | τ ) , j = 1 , 2 , 3 , 4 , are ( m + n τ ) π , ( m + 1 2 + n τ ) π , ( m + 1 2 + ( n + 1 2 ) τ ) π , ( m + ( n + 1 2 ) τ ) π respectively.
12: 22.8 Addition Theorems
22.8.1 sn ( u + v ) = sn u cn v dn v + sn v cn u dn u 1 k 2 sn 2 u sn 2 v ,
22.8.14 sn ( u + v ) = sn u cn u dn v + sn v cn v dn u cn u cn v + sn u dn u sn v dn v ,
22.8.15 cn ( u + v ) = sn u cn u dn v sn v cn v dn u sn u cn v dn v sn v cn u dn u ,
22.8.17 dn ( u + v ) = sn u cn v dn u sn v cn u dn v sn u cn v dn v sn v cn u dn u ,
22.8.23 | sn z 1 cn z 1 cn z 1 dn z 1 cn z 1 dn z 1 sn z 2 cn z 2 cn z 2 dn z 2 cn z 2 dn z 2 sn z 3 cn z 3 cn z 3 dn z 3 cn z 3 dn z 3 sn z 4 cn z 4 cn z 4 dn z 4 cn z 4 dn z 4 | = 0 .
13: 22.10 Maclaurin Series
22.10.1 sn ( z , k ) = z ( 1 + k 2 ) z 3 3 ! + ( 1 + 14 k 2 + k 4 ) z 5 5 ! ( 1 + 135 k 2 + 135 k 4 + k 6 ) z 7 7 ! + O ( z 9 ) ,
22.10.2 cn ( z , k ) = 1 z 2 2 ! + ( 1 + 4 k 2 ) z 4 4 ! ( 1 + 44 k 2 + 16 k 4 ) z 6 6 ! + O ( z 8 ) ,
22.10.3 dn ( z , k ) = 1 k 2 z 2 2 ! + k 2 ( 4 + k 2 ) z 4 4 ! k 2 ( 16 + 44 k 2 + k 4 ) z 6 6 ! + O ( z 8 ) .
The full expansions converge when | z | < min ( K ( k ) , K ( k ) ) . …
22.10.6 dn ( z , k ) = 1 k 2 2 sin 2 z + O ( k 4 ) ,
14: 14.31 Other Applications
Applications of toroidal functions include expansion of vacuum magnetic fields in stellarators and tokamaks (van Milligen and López Fraguas (1994)), analytic solutions of Poisson’s equation in channel-like geometries (Hoyles et al. (1998)), and Dirichlet problems with toroidal symmetry (Gil et al. (2000)). …
§14.31(ii) Conical Functions
The conical functions and Mehler–Fock transform generalize to Jacobi functions and the Jacobi transform; see Koornwinder (1984a) and references therein. …
15: 18.18 Sums
§18.18 Sums
Jacobi
Jacobi
See Andrews et al. (1999, Lemma 7.1.1) for the more general expansion of P n ( γ , δ ) ( x ) in terms of P n ( α , β ) ( x ) . …
Jacobi
16: 11.13 Methods of Computation
§11.13(i) Introduction
The treatment of Lommel and Anger–Weber functions is similar. …
§11.13(ii) Series Expansions
Although the power-series expansions (11.2.1) and (11.2.2), and the Bessel-function expansions of §11.4(iv) converge for all finite values of z , they are cumbersome to use when | z | is large owing to slowness of convergence and cancellation. For large | z | and/or | ν | the asymptotic expansions given in §11.6 should be used instead. …
17: 22.6 Elementary Identities
22.6.2 1 + cs 2 ( z , k ) = k 2 + ds 2 ( z , k ) = ns 2 ( z , k ) ,
22.6.5 sn ( 2 z , k ) = 2 sn ( z , k ) cn ( z , k ) dn ( z , k ) 1 k 2 sn 4 ( z , k ) ,
22.6.8 cd ( 2 z , k ) = cd 2 ( z , k ) k 2 sd 2 ( z , k ) nd 2 ( z , k ) 1 + k 2 k 2 sd 4 ( z , k ) ,
§22.6(iv) Rotation of Argument (Jacobi’s Imaginary Transformation)
Table 22.6.1: Jacobi’s imaginary transformation of Jacobian elliptic functions.
sn ( i z , k ) = i sc ( z , k ) dc ( i z , k ) = dn ( z , k )
18: 22.11 Fourier and Hyperbolic Series
§22.11 Fourier and Hyperbolic Series
22.11.1 sn ( z , k ) = 2 π K k n = 0 q n + 1 2 sin ( ( 2 n + 1 ) ζ ) 1 q 2 n + 1 ,
22.11.2 cn ( z , k ) = 2 π K k n = 0 q n + 1 2 cos ( ( 2 n + 1 ) ζ ) 1 + q 2 n + 1 ,
Similar expansions for cn 2 ( z , k ) and dn 2 ( z , k ) follow immediately from (22.6.1). … Again, similar expansions for cn 2 ( z , k ) and dn 2 ( z , k ) may be derived via (22.6.1). …
19: 22.12 Expansions in Other Trigonometric Series and Doubly-Infinite Partial Fractions: Eisenstein Series
§22.12 Expansions in Other Trigonometric Series and Doubly-Infinite Partial Fractions: Eisenstein Series
22.12.2 2 K k sn ( 2 K t , k ) = n = π sin ( π ( t ( n + 1 2 ) τ ) ) = n = ( m = ( 1 ) m t m ( n + 1 2 ) τ ) ,
22.12.8 2 K dc ( 2 K t , k ) = n = π sin ( π ( t + 1 2 n τ ) ) = n = ( m = ( 1 ) m t + 1 2 m n τ ) ,
22.12.11 2 K ns ( 2 K t , k ) = n = π sin ( π ( t n τ ) ) = n = ( m = ( 1 ) m t m n τ ) ,
22.12.13 2 K cs ( 2 K t , k ) = lim N n = N N ( 1 ) n π tan ( π ( t n τ ) ) = lim N n = N N ( 1 ) n ( lim M m = M M 1 t m n τ ) .
20: Bibliography B
  • W. N. Bailey (1938) The generating function of Jacobi polynomials. J. London Math. Soc. 13, pp. 8–12.
  • P. Baratella and L. Gatteschi (1988) The Bounds for the Error Term of an Asymptotic Approximation of Jacobi Polynomials. In Orthogonal Polynomials and Their Applications (Segovia, 1986), Lecture Notes in Math., Vol. 1329, pp. 203–221.
  • G. D. Bernard and A. Ishimaru (1962) Tables of the Anger and Lommel-Weber Functions. Technical report Technical Report 53 and AFCRL 796, University Washington Press, Seattle.
  • R. Bo and R. Wong (1994) Uniform asymptotic expansion of Charlier polynomials. Methods Appl. Anal. 1 (3), pp. 294–313.
  • J. M. Borwein and P. B. Borwein (1991) A cubic counterpart of Jacobi’s identity and the AGM. Trans. Amer. Math. Soc. 323 (2), pp. 691–701.