About the Project

.竞菜足球_『wn4.com_』世界杯怎么下赌注2021_w6n2c9o_2022年12月1日4时27分49秒_3bnnfzbbz

AdvancedHelp

(0.007 seconds)

11—20 of 854 matching pages

11: 18.41 Tables
For P n ( x ) ( = 𝖯 n ( x ) ) see §14.33. Abramowitz and Stegun (1964, Tables 22.4, 22.6, 22.11, and 22.13) tabulates T n ( x ) , U n ( x ) , L n ( x ) , and H n ( x ) for n = 0 ( 1 ) 12 . The ranges of x are 0.2 ( .2 ) 1 for T n ( x ) and U n ( x ) , and 0.5 , 1 , 3 , 5 , 10 for L n ( x ) and H n ( x ) . The precision is 10D, except for H n ( x ) which is 6-11S. … For P n ( x ) , L n ( x ) , and H n ( x ) see §3.5(v). …
12: 1.3 Determinants, Linear Operators, and Spectral Expansions
The minor M j k of the entry a j k in the n th-order determinant det [ a j k ] is the ( n 1 )th-order determinant derived from det [ a j k ] by deleting the j th row and the k th column. … for every distinct pair of j , k , or when one of the factors k = 1 n a j k 2 vanishes. … where ω 1 , ω 2 , , ω n are the n th roots of unity (1.11.21). … Let a j , k be defined for all integer values of j and k , and 𝐷 n [ a j , k ] denote the ( 2 n + 1 ) × ( 2 n + 1 ) determinant … The corresponding eigenvectors 𝐚 1 , , 𝐚 n can be chosen such that they form a complete orthonormal basis in 𝐄 n . …
13: 14.26 Uniform Asymptotic Expansions
The uniform asymptotic approximations given in §14.15 for P ν μ ( x ) and 𝑸 ν μ ( x ) for 1 < x < are extended to domains in the complex plane in the following references: §§14.15(i) and 14.15(ii), Dunster (2003b); §14.15(iii), Olver (1997b, Chapter 12); §14.15(iv), Boyd and Dunster (1986). …
14: 3.9 Acceleration of Convergence
A transformation of a convergent sequence { s n } with limit σ into a sequence { t n } is called limit-preserving if { t n } converges to the same limit σ . … If S = k = 0 ( 1 ) k a k is a convergent series, then … with s = 1 12 π 2 = 0.82246 70334 24 . … We give a special form of Levin’s transformation in which the sequence s = { s n } of partial sums s n = j = 0 n a j is transformed into: … where ( a ) 0 = 1 and ( a ) j = a ( a + 1 ) ( a + j 1 ) are Pochhammer symbols (§5.2(iii)), and the constants β and γ are chosen arbitrarily subject to certain conditions. …
15: 26.4 Lattice Paths: Multinomial Coefficients and Set Partitions
These are given by the following equations in which a 1 , a 2 , , a n are nonnegative integers such that … M 1 is the multinominal coefficient (26.4.2): … M 2 is the number of permutations of { 1 , 2 , , n } with a 1 cycles of length 1, a 2 cycles of length 2, , and a n cycles of length n : …For each n all possible values of a 1 , a 2 , , a n are covered. … where the summation is over all nonnegative integers n 1 , n 2 , , n k such that n 1 + n 2 + + n k = n . …
16: 5.10 Continued Fractions
5.10.1 Ln Γ ( z ) + z ( z 1 2 ) ln z 1 2 ln ( 2 π ) = a 0 z + a 1 z + a 2 z + a 3 z + a 4 z + a 5 z + ,
where
a 0 = 1 12 ,
a 1 = 1 30 ,
For exact values of a 7 to a 11 and 40S values of a 0 to a 40 , see Char (1980). …
17: 11.14 Tables
  • Abramowitz and Stegun (1964, Chapter 12) tabulates 𝐇 n ( x ) , 𝐇 n ( x ) Y n ( x ) , and I n ( x ) 𝐋 n ( x ) for n = 0 , 1 and x = 0 ( .1 ) 5 , x 1 = 0 ( .01 ) 0.2 to 6D or 7D.

  • Agrest et al. (1982) tabulates 𝐇 n ( x ) and e x 𝐋 n ( x ) for n = 0 , 1 and x = 0 ( .001 ) 5 ( .005 ) 15 ( .01 ) 100 to 11D.

  • Zanovello (1975) tabulates 𝐇 n ( x ) for n = 4 ( 1 ) 15 and x = 0.5 ( .5 ) 26 to 8D or 9S.

  • Zhang and Jin (1996) tabulates 𝐇 n ( x ) and 𝐋 n ( x ) for n = 4 ( 1 ) 3 and x = 0 ( 1 ) 20 to 8D or 7S.

  • Abramowitz and Stegun (1964, Chapter 12) tabulates 0 x ( I 0 ( t ) 𝐋 0 ( t ) ) d t and ( 2 / π ) x t 1 𝐇 0 ( t ) d t for x = 0 ( .1 ) 5 to 5D or 7D; 0 x ( 𝐇 0 ( t ) Y 0 ( t ) ) d t ( 2 / π ) ln x , 0 x ( I 0 ( t ) 𝐋 0 ( t ) ) d t ( 2 / π ) ln x , and x t 1 ( 𝐇 0 ( t ) Y 0 ( t ) ) d t for x 1 = 0 ( .01 ) 0.2 to 6D.

  • 18: 19.29 Reduction of General Elliptic Integrals
    It can be expressed in terms of symmetric integrals by setting a 5 = 1 and b 5 = 0 in (19.29.8). … If both square roots in (19.29.22) are 0, then the indeterminacy in the two preceding equations can be removed by using (19.27.8) to evaluate the integral as R G ( a 1 b 2 , a 2 b 1 , 0 ) multiplied either by 2 / ( b 1 b 2 ) or by 2 / ( a 1 a 2 ) in the cases of (19.29.20) or (19.29.21), respectively. … Next, for j = 1 , 2 , define Q j ( t ) = f j + g j t + h j t 2 , and assume both Q ’s are positive for y < t < x . …If Q 1 ( t ) = ( a 1 + b 1 t ) ( a 2 + b 2 t ) , where both linear factors are positive for y < t < x , and Q 2 ( t ) = f 2 + g 2 t + h 2 t 2 , then (19.29.25) is modified so that …In the cubic case, in which a 2 = 1 , b 2 = 0 , (19.29.26) reduces further to …
    19: 13.22 Zeros
    From (13.14.2) and (13.14.3) M κ , μ ( z ) has the same zeros as M ( 1 2 + μ κ , 1 + 2 μ , z ) and W κ , μ ( z ) has the same zeros as U ( 1 2 + μ κ , 1 + 2 μ , z ) , hence the results given in §13.9 can be adopted. … For example, if μ ( 0 ) is fixed and κ ( > 0 ) is large, then the r th positive zero ϕ r of M κ , μ ( z ) is given by
    13.22.1 ϕ r = j 2 μ , r 2 4 κ + j 2 μ , r O ( κ 3 2 ) ,
    where j 2 μ , r is the r th positive zero of the Bessel function J 2 μ ( x ) 10.21(i)). …
    20: 34.5 Basic Properties: 6 j Symbol
    If any lower argument in a 6 j symbol is 0 , 1 2 , or 1 , then the 6 j symbol has a simple algebraic form. …
    34.5.9 { j 1 j 2 j 3 l 1 l 2 l 3 } = { j 1 1 2 ( j 2 + l 2 + j 3 l 3 ) 1 2 ( j 2 l 2 + j 3 + l 3 ) l 1 1 2 ( j 2 + l 2 j 3 + l 3 ) 1 2 ( j 2 + l 2 + j 3 + l 3 ) } ,
    34.5.11 ( 2 j 1 + 1 ) ( ( J 3 + J 2 J 1 ) ( L 3 + L 2 J 1 ) 2 ( J 3 L 3 + J 2 L 2 J 1 L 1 ) ) { j 1 j 2 j 3 l 1 l 2 l 3 } = j 1 E ( j 1 + 1 ) { j 1 + 1 j 2 j 3 l 1 l 2 l 3 } + ( j 1 + 1 ) E ( j 1 ) { j 1 1 j 2 j 3 l 1 l 2 l 3 } ,
    34.5.16 ( 1 ) j 1 + j 2 + j 3 + j 1 + j 2 + l 1 + l 2 { j 1 j 2 j 3 l 1 l 2 l 3 } { j 1 j 2 j 3 l 1 l 2 l 3 } = j ( 1 ) l 3 + l 3 + j ( 2 j + 1 ) { j 1 j 1 j j 2 j 2 j 3 } { l 3 l 3 j j 1 j 1 l 2 } { l 3 l 3 j j 2 j 2 l 1 } .
    34.5.23 ( j 1 j 2 j 3 m 1 m 2 m 3 ) { j 1 j 2 j 3 l 1 l 2 l 3 } = m 1 m 2 m 3 ( 1 ) l 1 + l 2 + l 3 + m 1 + m 2 + m 3 ( j 1 l 2 l 3 m 1 m 2 m 3 ) ( l 1 j 2 l 3 m 1 m 2 m 3 ) ( l 1 l 2 j 3 m 1 m 2 m 3 ) .